SCHEME OF INSTRUCTION AND EXAMINATION

ELECTRONICS AND TELECOMMUNICATION ENGINEERING

FINAL YEAR OF BACHELOR'S DEGREE COURSE

IN ELECTRONICS AND TELECOMMUNICATION

SEMESTER VII:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subjects</th>
<th>Scheme Of Instruction</th>
<th>Scheme Of Examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>ETC 7.1</td>
<td>Peripheral Devices & Interfacing</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ETC 7.2</td>
<td>Microwave & Radar Engineering</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ETC 7.3</td>
<td>Optical Fiber Communication</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ETC 7.4</td>
<td>Elective I</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ETC 7.5</td>
<td>Elective II</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ETC 7.6</td>
<td>Project Seminar</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

15 5 9 - 500 150 - 200 850

Semester VIII:

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subjects</th>
<th>Scheme of Instruction hrs/week</th>
<th>Scheme of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>ETC 8.1</td>
<td>Satellite & TV Engineering</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ETC 8.2</td>
<td>Elective III</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ETC 8.3</td>
<td>Elective IV</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>ETC 8.4</td>
<td>Project</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

9 3 16 9 300 100 50 200 650

L - Lecture
T - Tutorial
R - Report

Th - theory

S - Sessionals
O/SM - Orals/Seminar

Th Dur (hrs) – Duration of theory paper in hours.
LIST OF ELECTIVES

ELECTIVE I

<table>
<thead>
<tr>
<th>SUBJECT CODE</th>
<th>NAME OF THE SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETC 7.4.1</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>ETC 7.4.2</td>
<td>VLSI Technology & Design – I</td>
</tr>
</tbody>
</table>

ELECTIVE II

<table>
<thead>
<tr>
<th>SUBJECT CODE</th>
<th>NAME OF THE SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETC 7.5.1</td>
<td>Mobile Communication Systems</td>
</tr>
<tr>
<td>ETC 7.5.2</td>
<td>Artificial Neural Networks</td>
</tr>
</tbody>
</table>

ELECTIVE III

<table>
<thead>
<tr>
<th>SUBJECT CODE</th>
<th>NAME OF THE SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETC 8.2.1</td>
<td>Data Communication</td>
</tr>
<tr>
<td>ETC 8.2.2</td>
<td>Consumer Electronics</td>
</tr>
<tr>
<td>ETC 8.2.3</td>
<td>Optical Computing</td>
</tr>
</tbody>
</table>

ELECTIVE IV

<table>
<thead>
<tr>
<th>SUBJECT CODE</th>
<th>NAME OF THE SUBJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETC 8.3.1</td>
<td>E-Commerce</td>
</tr>
<tr>
<td>ETC 8.3.2</td>
<td>Embedded Systems</td>
</tr>
<tr>
<td>ETC 8.3.3</td>
<td>Telecommunications Transmission System</td>
</tr>
<tr>
<td>ETC 8.3.4</td>
<td>Digital Image Processing</td>
</tr>
</tbody>
</table>

ETC 7.1 PERIPHERAL DEVICES & INTERFACING

- Lectures per week: 4 hours
- Practical per week: 2 hours
- Max. marks for theory paper: 100
- Max. marks for sessionals: 25
- Duration of paper: 3 hours
- Total no of modules: 4
- No. of questions from each module: 2
MODULE I

1. Input Output Organization
 --Peripheral devices, input output interface, asynchronous data transfer, modes of transfer, priority interrupt, DMA, input output processor, serial communication.

2. Interfacing Devices
 --Types of interfacing devices, address decoding for input/output, I/O ports, interfacing I/O ports [Steps in interfacing I/O devices, methods of interfacing I/O devices].

3. 8155 - Multipurpose Programmable Device
 --Block diagram, control logic, interfacing 8155 I/O ports, 8155 timer, 8155 ports in handshake mode.

MODULE II

1. 8255 - Programmable I/O Device
 --Block diagram, modes of operation, interfacing 8255.

2. 8259 - Programmable Interrupt Controller
 --Block diagram, architecture and signal description, command, words, operating modes of 8259A, interfacing & programming of 8259A.

3. 8251 - Programmable Communication Interface - USART
 Architecture and signal description, operating modes, command instruction format, interfacing & programming 8251 with 8086.

MODULE III

1. 8279 - Keyboard/Display Controller
 --Architecture & signal description, modes of operation, command words, interfacing & programming 8279.

2. 8253 - Programmable Interval Timer
 --Architecture & signal description, modes of 8253, Control word, programming & interfacing.

3. 8237 - Programmable DMA interface
 --Internal Architecture, Signal description, DMA operations with 8237, 8237 commands, programming & interfacing 8237 with 8086.

MODULE IV

1. 8272 - Floppy Disk Controller
 --Internal Architecture, Signal description, Functional details.
8275 - CRT Controller
--Internal Architecture, Signal description, Display formats & operational features.

2. Analog interfacing
--Interfacing A/D Data converters, ADC 7109, interfacing 7109 with 8086 through 8255,
 DAC 0800, interfacing DAC 0800 with 8086.

3. Industrial Control
--Temperature monitoring & control system, speed control of D.C. motors, firing of
 thyristor.

4. Interfacing buses
 IEEE 488 (GPIB) & RS - 232C

Textbooks:
1. Advanced Microprocessors & Peripherals by A.K.Ray & K.M.Bhurchandi
2. Computer System Architecture by Morris Mano

Reference books:
1. Microprocessors & interfacing by D.V.Hall
2. Microprocessors - Architecture, Programming & Applications by Ramesh Gaonkar
3. Introduction to Microprocessors by A.P. Mathur

ETC 7.2 MICROWAVE & RADAR ENGINEERING

Lectures per week : (3+1) hours
Practical per week : 2 hours
Max. marks for theory paper : 100
Max. marks for orals : 50
Max. marks for sessionals : 25
Duration of paper : 3 hours
Total no of modules : 4
No. of questions from each module : 2
Min. no of questions to be answered from each module: 1
Total no. of questions to be answered in the paper : 5

MODULE I
Fundamentals of microwave amplifiers & oscillators: Beam coupling, power transfer from
alternating gap field to density modulated beam, beam loading, noise, microwave
oscillators, analysis of two terminal oscillator circuits, build-up and limitation of amplitude
of oscillation, admittance diagram for two terminal oscillator, admittance diagram for four
terminal oscillators.
Klystron: Bunching by velocity modulation, velocity diagram (Applegate diagram), small signal theory of bunching two terminal klystrons.
Reflex Klystron: Structure, velocity diagram, bunching in Reflex Klystron, power delivered to the resonator, effect of the repeller voltage upon power delivered to the resonator, electronic admittance.

MODULE II
Traveling Wave Magnetron: Structure, modes of oscillation, mode separation by strapping.
Traveling Wave Tube: Construction and operation, slow wave circuits, backward wave oscillator.
Measurements: Calorimeter wattmeters, bolometers, bolometer bridges & mounts, thermocouples and crystals, measurement of standing waves, impedance measurement, measurement of frequency & wavelength, microwave bridges, measurement of Q (by transmission, VSWR measurement, decrement measurement), measurement of noise factor.
Microwave semiconductor devices: Microwave FET’s, Tunnel diode, Gunn diode, Avalanche transit time devices: IMPATT & TRAPATT.

MODULE III
RADAR: Principle of operation of radar, maximum unambiguous range, radar range equation, Radar block diagram, radar frequencies, applications of radar, accuracy & resolution of radar, radar horizon, apparent range.
Receiver noise, signal to noise ratio, Probability of Detection & False Alarm, Integration of Radar Pulses.
Radar Cross Section: Radar Cross Section of Targets, Radar Cross section fluctuations, Swerling Target model
Transmitter power, pulse repetition frequency, system losses
Doppler frequency shift, Continuous wave Radar, FM-CW Radar
Clutter: Sea clutter, Weather clutter, other sources of atmospheric echoes
MTI Radar: Principle of operation, block diagram, single & double delay line cancellers, clutter attenuation, blind speeds, staggered PRF’s, limitations to MTI performance, non-coherent MTI, MTI from a moving platform.
Radar displays: Plan Position Indicator (PPI)
Antenna for radars: Electronically Steered Phase Array Antenna, advantages of Phased Array Antenna, limitations

MODULE IV
TRACKING RADAR: Different methods of tracking, Sequential lobing, Conical Scanning,
amplitude & phase comparison Monopulse Radar, limitations to tracking accuracy, low angle tracking, frequency agility

Tracking in Range: Split Gate Tracker, Precision on-axis tracking, track while scan, automatic tracking with surveillance radar
Radar signal Management, pulse compression, FM pulse compression radar, CHIRP, phase coding.
Radomes: Rigid radomes, air supported radomes, weather effects on radomes, radome wall construction, metallic radomes, rotodomes.

Textbooks:
1) Microwave Principles by H.J.Reich, J.G.Skolnik, P.F.Ordung, H.L.Krauss - Affiliated East West Press Ltd.
3) Understanding Radar Systems by Simon Kingsley & Shaun Queegan – Standard Publisher Distributors, New Delhi

Reference books:
1) Microwave Devices & Circuits by S.Y.Liao – Prentice Hall of India
2) Microwaves by K.G.Gupta, Wiley Eastern Limited

ETC 7.3 OPTICAL FIBER COMMUNICATION

Lectures per week : 4 hours
Practical per week : 2 hours
Max. marks for theory paper : 100
Max. marks for sessionals : 25
Duration of paper : 3 hours
Total no of modules : 4
No. of questions from each module : 2
Min. no of questions to be answered from each module : 1
Total no. of questions to be answered in the paper : 5

MODULE I
Introduction: Need for optical communication, block diagram of an optical communication system.
Optical fibers: Basic Optical Laws and definitions, Optical fiber modes and configurations, Mode theory for circular wave guides, graded index fiber structure, Overview of Fiber material and fiber fabrication.
Signal degradation in optical fibers: attenuation, Signal distortion in optical waveguides, Pulse broadening in graded index waveguides, mode coupling.
MODULE II
Optical Sources: Light-emitting diode structures, Light source material, Internal quantum efficiency, modulation capability, Transient response. Laser diode modes and threshold conditions, Resonant frequencies, Laser diode structures and Radiation Patterns, modulation of laser diodes, Temperature effects.

Power Launching and Coupling: Source to fiber power launching, Lensing schemes for coupling improvement, Fiber-to-fiber joints, Fiber splicing, optical fiber connectors

MODULE III
Photodetectors: Physical principles of photodiodes, Photodetector noise, Detector response time, Photodiode material

MODULE IV
Unguided Optical Communication System: Transmission Parameters, Sources and Detectors, Examples of unguided optical communication systems.

Optical fiber communication systems: Digital optical fiber Telecommunication systems, Data Communication networks, Analog systems, the optical ether.

Textbooks:
2. Optical communication system by J. Gowar

Reference books:
2. Fiber optics by P.K. Cheo
3. Optical fibers by Okashi

ETC 7.4.1 OPERATING SYSTEMS (ELECTIVE I)
Lectures per week: (3+1) hours
Practical per week: 2 hours
Max. marks for theory paper: 100
Max. marks for orals: 50
Max. marks for sessionals: 25
Duration of paper: 3 hours
Total no of modules: 4
No. of questions from each module: 2
Min. no of questions to be answered from each module: 1
Total no. of questions to be answered in the paper: 5

MODULE I
Introduction to Operating Systems: The computer as a tool for programmers and end-users, basic elements, processor registers, instruction execution, interrupts, memory hierarchy, cache memory, I/O communication techniques, operating system objectives and functions, evolution of operating system.
Process description & control: Process, process states, the creation and termination of processes, two and five process model, processor modes, suspended process, process description, operating system control structures, process control structures, process location, process attributes, process control.
Threads, SMP & Microkernels: Multithreading, thread functionality, thread states, thread synchronization, relationship between threads and processes, symmetric multiprocessing, SMP organization, Microkernels, study of WINDOWS NT thread and SMP management.
Scheduling: Typing of scheduling, scheduling algorithms, first come first served, round robin, shortest process, next, fair-share scheduling, multiprocessor scheduling, real time scheduling, study of WINDOWS NT scheduling.

MODULE II
Concurrency control: Principles of concurrency, operating system concerns, process interaction, competition amongst processes for resources, cooperation amongst processes by sharing and communication.
Mutual exclusion: Requirements of mutual exclusion, Dekker’s Algorithm, Peterson’s algorithm, interrupt disabling, machine instruction approach.
Deadlock & Starvation: Principles of deadlock and starvation, conditions for deadlock, deadlock prevention, deadlock avoidance, deadlock detection, dining philosopher’s problem, UNIX concurrency mechanism.

MODULE III
Memory: Memory management requirements, memory partitioning, paging, segmentation.
Virtual memory: Hardware & control structure, paging, segmentation, operating system software, fetch policy, placement policy, replacement policy, optimal, least recently used, first-in, first-out, clock algorithm for replacement, study of WINDOWS NT memory management.

I/O management & disk scheduling: I/O devices, organization of I/O function, operating system design issues, I/O buffering, disk scheduling, disk scheduling policies, RAID, disk cache.

File management: Files, file management systems, file organization and access, file directories, file sharing, record blocking, secondary storage management, study of WINDOWS NT file system.

MODULE IV

Distributed systems: Need for protocol architecture, TCP/IP protocol architecture, the OSI protocol architecture, client/server computing and applications, classes of client/server applications, middleware, distributed message passing, remote procedure calls, clusters, study of WINDOWS NT WOLFPACK.

Distributed process management: Process migration, distributed global states, distributed mutual exclusion, distributed queue, distributed deadlock, deadlock in message communication.

RISC: Basics of RISC approach, pipelined and super-scalar approaches, vector processors and parallel processors, concept of Von Neumann architecture.

Textbooks:

Reference books:
5. Inside Windows NT by David Solomon, Microsoft Press.

ETC 7.4.2 VLSI TECHNOLOGY AND DESIGN (ELECTIVE I)

Lectures per week : 4 hours
Practical per week : 2 hours
Max. marks for theory paper : 100
Max. marks for orals : 50
Max. marks for sessionals : 25
Duration of paper: 3 hours
Total no of modules: 4
No. of questions from each module: 2
Min. no of questions to be answered from each module: 1
Total no. of questions to be answered in the paper: 5

MODULE I
Silicon semiconductor technology: Wafer processing, oxidation, epitaxy, deposition, ion-implantation and diffusion silicon gate process.
Basic CMOS technology: A basic n-well and p-well CMOS process. Silicon on insulator, MOSIS layout design rules (full-custom mask layout designs), stick diagrams, layout editors (Magic/Micro Wind) and circuit extraction.

MODULE II
MOS transistors: Structures, MOS system under external bias, operation of MOS transistor (MOSFET), threshold voltage, MOSFET current-voltage characteristics (CGA), channel length modulation, substrate bias effect, measurements of parameters – K_N, V_{TP} & γ, MOSFET.
Scaling – Full scaling & constant voltages scaling. Short channel effects, narrow channel effects, MOSFET capacitances.
Modeling of MOS transistor circuits using SPICE (level1 model equations)

MODULE III
MOS Inverters: Static Characteristics: VTC, noise immunity and noise margins, NMOS inverter, CMOS inverter (SPICE model) – circuit operation, calculation of V_{IL}, V_{IH} and V_{TH}, power and area considerations, CMOS latch-up and its prevention, CMOS logic circuits, CMOS transmission gate.
Cell based design methodology: Standard cell, Macrocell place and route.
Array based implementation approaches: Mask- programmable array, prewired Arrays (FPGA), Ram based (volatile FPGAs)

MODULE IV
VLSI design methodologies
VLSI design flow, design analysis, simulations: circuit, timing, switch-level, gate-level (or logic), functional – (using VHDL), Design verification: Electrical, timing, functional (formal), Implementation approaches: Custom circuit design, Design synthesis: Circuit and logic Synthesis, Validation and testing: Test procedure, Design for Testability (DFT) Scan – Based Test, Boundary- Scan Design, Built in self test (BIST), test-pattern generation, fault models, Automatic Test-Pattern generation (ATPG), Fault simulation.

Textbooks:
4. Fundamentals of Digital logic with VLSI design by Stephen Brown, Zvonco Vranesic

Reference books:
1. Basic VLSI Design by Douglas Pucknell, Kamran Eshraghian, PHI.
2. Modern VLSI design (Systems on Silicon) by Wayne Wolf.
3. Introduction to VLSI design by Eugene D. Garabicius.
4. VHDL by Douglas Perry.
5. VHDL Primer by J. Bhaskar.

ETC 7.5.1 MOBILE COMMUNICATION (ELECTIVE II)

Lectures per week: 4 hours
Max. marks for theory paper: 100
Max. marks for orals: 50
Max. marks for sessionals: 25
Duration of paper: 3 hours
Total no of modules: 4
No. of questions from each module: 2
Min. no of questions to be answered from each module: 1
Total no. of questions to be answered in the paper: 5

MODULE I
Introduction: Applications of mobile communication, frequencies used, basic cellular system and its operation, propagation attenuation, fading characteristics, delay spread and coherent bandwidth, propagation paths, cell shape, components of cellular systems.
Concept of frequency reuse channel, co-channel interface reduction factor, carrier to interference ratio of omni directional antenna system, hand off mechanism, cell splitting, analog cellular mobile: specifications of mobile station, specification of land station.

MODULE II
Mobile point-to-point model: Propagation over water, foliage loss, near-in distance and long distance propagation, path loss, cell site antenna height and signal coverage cells, mobile to mobile propagation.
Cell site mobile antennas: Gain and pattern relationship, sum and difference pattern and their synthesis, cell site antennas and their types, minimum separation of cell site receiving antennas, mobile antennas and their types.

MODULE III
Co-channel interference and its measurement, reduction of co-channel interference by notch in the tilted antenna pattern, power control, diversity receiver, adjacent channel interference, near-end-far-end interference, cross talk, SAT tone, UHF TV interference..
Definition of channel assignment, fixed channel assignment, channel sharing and borrowing, sectorization, non-fixed channel assignment algorithms.
Switching and traffic types of switching need for cellular analog switching equipments and digital. Features of handling, MTSO interconnection.

MODULE IV
Medium access control: Drawbacks of CSMA-CD in wireless communications, use of SDMA, FDMA, TDMA, Fixed TDM, Classical ALOHA, Slotted ALOHA, CSMA, DAMA (Demand assigned multiple access), PRMA (Packer reservation multiple access), Reservation TDMA; MACA (Multiple access with collision avoidance), Polling, ISMA (Inhibit sense multiple access), CDMA, SAMA (Spread ALOHA multiple access)
Telecommunication Systems: GSM (Global system for mobile communication), mobile services, system architecture, radio interface, logical channel and frame hierarchy, protocols, localization and calling handover, security.
DECT – System architecture and protocol architecture, TETRA.

Books:

ETC 7.5.2 ARTIFICIAL NEURAL NETWORK (ELECTIVE-II)

Lectures per week :4 hours
Max. marks for theory paper :100
Max. marks for orals :50
Max. marks for sessionals :25
Duration of paper :3 hours
Total no of modules :4
No. of questions from each module :2
Min. no of questions to be answered from each module: 1
Total no. of questions to be answered in the paper :5

MODULE I
MODULE II

MODULE III
Winner-Take-All network, minimum H.D. classifier, simple competitive learning algorithm, LQV algorithm, an adaptive resonance theory, topologically organized network – SOM, SOFM, Kohonens algorithms, Distance based learning, K-means clustering algorithms and problems.

MODULE IV

Books:
1. Elements of artificial neural network by Malhotra, Mohan, Ranka, Penram Publications.
2. Introduction to Artificial neural network by Zurada, Jaico Publications.
3. Introduction to Artificial neural network by Patterson.

ETC 8.1 SATELLITE AND TELEVISION ENGINEERING
Lectures per week : 3 hours
Tutorials per week : 1 hours
Practical per week : 2 hours
Max. marks for theory paper : 100
Max. marks for orals : 50
Max. marks for sessionals : 25
Duration of paper : 3 hours
Total no of modules : 4
No. of questions from each module : 2
Min. no of questions to be answered from each module : 1
Total no. of questions to be answered in the paper : 5

MODULE I
Satellite orbits and inclination: Synchronous orbit, orbital parameters, satellite location with respect to earth, look angles, earth coverage and slant range, eclipse effects, placement in geostationary orbit, station keeping, stabilization.
Satellite subsystems: Power, altitude and orbit control, propulsion, repeaters, antennas, Telemetry, Tracking & Command (TTC), thermal control, structure.
Earth station: Design requirements, subsystems, small earth stations, VSATs, mobile and transportable earth stations.
Applications: Communication, remote sensing, earth observation, meteorological, military and scientific & technological applications. Indian National Satellite Systems (INSAT).

MODULE II

Frequency allocations and spectrum.
Link design: Design equations, system noise temperature, C/N and G/T ratio, atmospheric and ionospheric effects, uplink design, complete link design, interference effects, earth station parameters.
Analog communication: FM/FDM techniques, S/N and C/N ratio, SCPC system, FM/FDM TV satellite link, intermodulation products.
Multiple Access Techniques: TDMA: Frame structure, burst structure, frame efficiency, super frame, frame acquisition and synchronization, comparison with FDMA, burst time plan, multiple beam (Satellite switched) system, beam hopping TDMA.
Demand Assignment Multiple Access Techniques: Erlang call congestion formula, DA-FDMA (Spade) system, DA-TDMA, digital speech interpolation.
Spread spectrum techniques and CDMA: Process gain, Jam margin, J/S ratio and antijam margin, Direct sequence spread spectrum, PN sequences, DS CDMA, frequency hopping system, FH-SS CDMA, Synchronization, Applications.

MODULE III

Basic television system: Sound and picture transmission, scanning methods, interlaced scanning, number of scanning lines, vertical and horizontal resolution, evaluation of bandwidth of baseband signal.
Television cameras: Principle of working and construction of Vidicon, CCD image sensors, colour television camera, gamma correction.
Composite video signal: Video signal levels, need for synchronization, details of synchronizing and equalizing pulses, scanning sequence details.
Signal transmission: AM and FM channel bandwidth, vestigial sideband transmission, VSB correction, television standards and their comparison (PAL, NTSC, SECAM), VHF and UHF bands.
Television transmission and relay system: Requirements of TV broadcast transmission, block diagram of a TV transmitter, visual and aural exciter, diplexer, microwave TV relay systems.
Studio equipment, organization and control: Technical facilities in television studios, television studios, production control room facilities, master control room equipment.
Signal reception: TV receiver block diagram, construction of picture tube and their control circuits, booster, balun, RF tuner, IF amplifier, IF response curve, Trap circuits, sync separators, video detector, AGC and AFC schemes, Audio detector, horizontal and vertical deflection systems, high and Extra High Tension (EHT) circuits.
MODULE IV

Colour television: Principles of additive and subtractive colour mixing, chromaticity diagram, compatibility, luminance, hue and saturation, luminance signal, generation of colour difference signal, polarity of colour difference signal.

Colour television display tubes: Delta gun picture tube, PIL picture tube, Trinitron picture tube, purity and convergence, static and dynamic convergence, automatic degaussing, grey scale tracking, pincushion distortion, S correction.

Colour signal transmission and reception: Frequency interleaving, bandwidth for colour signal transmission, modulation of colour difference signal, generation of chrominance signal.

NTSC colour TV system: I and Q signals, selection of colour subcarrier frequency, NTSC encoder and decoder, limitation of NTSC system.

PAL colour television system: Main features of PAL system, cancellation of phase errors, PAL encoder, PAL decoder, PAL-D.

SECAM colour television system: SECAM encoder and decoder block diagram.

Advanced television systems: HDTV systems, HDTV systems considerations, HDTV standards and compatibility, NHK system, MUSE system.

Textbooks:
1. Satellite communication by D.C. Aggarwal, Khanna publications.
2. Electronic communication systems by W. Tomasi, Pearson Education, Asia.

Reference books:
3. Satellite communications, R.M. Gagliardi, CBS Publishers & Distributors, New Delhi
4. The satellite communication applications hand book by Bruce R.Elbert, Artech House Boston, 1997

ETC 8.2.1 DATA COMMUNICATION

Lectures per week: 4 hours
Practical per week: 2 hours
Max. Marks for theory paper: 100
Max. Marks for orals: 50
Max. Marks for sessionals: 25
Duration of paper: 3 hours
Total no of modules: 4
No. of questions from each module: 2
Min. no of questions to be answered from each module: 1
Total no. of questions to be answered in the paper: 5

MODULE-I
Data communication: Components, basic concepts - Line configuration: point to point, multipoint; Topology - mesh, star, tree, bus, ring, hybrid; Access methods - command/response, interrupt-driven, Token passing, CSMA/CD; Transmission modes - simplex, half-duplex, full-duplex; Categories of networks - LAN, MAN, WAN.
The OSI Model: Layered Architecture, Functions of the layers. DTE-DCE interface, Modems: Role of modems, modem functions, operation of a modem, connecting modem to telephone line; Multiplexing: FDM, synchronous TDM, statistical TDM, WDM

MODULE-II
Data link control: Line Discipline, flow control, error control: ARQ, stop-and –wait ARQ, sliding window ARQ, Go-back-N ARQ, Selective-Reject ARQ.
Data link protocols - Asynchronous protocols: XMODEM, synchronous protocols - Character oriented protocols: Binary Synchronous Communication (BSC), Bit Oriented Protocols: SDLC, HDLC.

MODULE-III
X.25: X.25 layers-Physical layer, frame layer, packet layer, PLP packets

MODULE-IV
Networking Devices: Repeaters, Bridges, Routers, Gateways.
Routing Algorithms: Distance Vector routing, link state routing, shortest path Algorithm-Floyd’s Algorithm.
ATM: ATM Architecture-Virtual connection, Identifiers, Cells, Connection, Establishment & Release
ISDN: Integrated Digital network, ISDN, ISDN channels-B, D, H Channels, ISDN Interfaces, Functional grouping, ISDN protocol architecture- Physical layer, data link layer, network layer, ISDN addressing.

Text-books:

Reference books:

ETC 8.2.2 CONSUMER ELECTRONIC

Lectures per week : 3 hours
Tutorials per week : 1 hour
Practical per week : 2 hours
Max. marks for theory paper : 100
Max. marks for orals : 50
Max. marks for sessionals : 25
Duration of paper : 3 hours
Total no of modules : 4
No. of questions from each module : 2
Min. no of questions to be answered from each module : 1
Total no. of questions to be answered in the paper : 5

MODULE I

Electro acoustical Transducers:
Microphones, Loudspeakers, Pick-up characteristics, specifications and applications.

Sound Recording and Reproduction:
Principle and block schematic of disc recording system, magnetic recording system, optical recording system, compact disc.

Audio Amplifier and subsystems:
Audio mixers, Tone controls, Graphic equalizers, Features of Hi-Fi and stereo systems, Dolby system, Public Address systems, Tuners

MODULE II

Testing, Alignment & Servicing of Television Receivers:
Testing & Alignment of TV Receivers, TV Wobbuloscope, Video Pattern Generators, Television Test Charts, Marker Generator, colour bar Generator, Colour Bar Pattern Generator, Vectoroscope.

CCTV system Feature:
Random Interlace, Video Camera signal processing, Single tube colour camera.

Cable Television:
Cable systems, Different frequency bands/Channels, Cable types and networks, Head End parameters, Trunk and cable distribution systems, scrambling and Conditional Access systems (CAS).

Satellite Television, Direct to Home TV

Digital Television:

Advanced TV systems:
Multiplexed Analog component Signals (MAC), D2-MAC/PACKET Signal, Advantages.

Projection Television: Basic Projection TV systems, Front & Rear projection, Schmidt Optical systems, LCD & Laser Projection systems.

High Definition Television Systems:
HDTV systems, HDTV standards & compatibility, MUSE system, HD-MAC Family, 3D Stereoscopic TV Techniques.

MODULE III

Principles of video recording:
Modes of recording, Conversion of analog audio and video signals to digital.

Modern home appliances with electronic control such as Microwave oven, Washing machines, DVD, MP3 player, digital camera, cordless phones, cell phones, remote controls for TV, Inverters, UPS

Working principle of photo copying and fax machine.

Maintenance and safety measures

MODULE IV

Marketing planning:
Importance of marketing planning, steps involved in the marketing planning process scanning the marketing environment and spotting the business opportunities, setting the market objectives

Marketing strategy:
The meaning and significance of marketing strategy, formulating the marketing strategy. Techniques and practices for mass production for reliable production

Costing:
Overview of costing and marketing communication.

Patents:
Introduction to patents

Textbooks:
2. Audio Encyclopaedia by Triman
3. High quality sound recording and reproduction by Olson
4. Phillips handbook
5. Television Engineering by A. M. Dhake
6. Marketing management planning, implementation and control, 2nd edition by V S Ramaswamy, J Namakumari
7. Consumer Electronics by Gupta B R
8. Everything You Ever wanted to know about DVD by Jim Taylor

ETC 8.2.3 OPTICAL COMPUTING

Lectures per week : 3 hours
Tutorials per week : 1 hour
Practical per week : 2 hours
Max. marks for theory paper : 100
Max. marks for orals : 50
Max. marks for sessionals : 25
Duration of paper : 3 hours
Total no of modules : 4
No. of questions from each module : 2
Min. no of questions to be answered from each module : 1
Total no. of questions to be answered in the paper : 5

MODULE I

MODULE II

MODULE III
Non-linear effects - optical bistability. Hybrid polarisation devices, optical phase conjugation. Passive and Active integrated optic devices

MODULE IV
Digital optical computers – Internal representation, implementation of binary logic elements, implementation of arithmetic units. Memory – interconnection and communication – Architectures

Text Books:
1. Optical Computing by Dror G. Peitelsor
2. Digital Optical Computing proc. IEEE, VOL.72,1984

ETC 8.3.1 ELECTRONIC COMMERCE

Lectures per week : 4 hours
Practical per week : 2 hours
Max. marks for theory paper : 100
Max. marks for orals : 50
Max. marks for sessionals : 25
Duration of paper : 3 hours
Total no of modules : 4
No. of questions from each module : 2
Min. no of questions to be answered from each module : 1
Total no. of questions to be answered in the paper : 5

MODULE I
Introduction to E-Commerce, benefits and limitations, types of E-Commerce. Reasons for going online, Internet and networking technologies, web browsers, introduction to HTML, XML, JavaScript, web application servers. Internet and network protocols. Web and database integration.

MODULE II
Security on the Internet. Threats and challenges on Internet, Secret key encryption, public key encryption, authentication, digital signatures, integrity, privacy on Internet, client based security, server based security, Secure Socket Layer (SSL), S-HTTP, Algorithms for security - RSA and DIFFIE-HELLMAN.

MODULE III
Electronic payment systems - limitations of traditional payment instruments, digital cash, electronic cheques, online credit card based systems, SET (Secure Electronic Transaction) protocol, debit cards, smart cards, preventing double spending. Marketing strategies on the web, web design, attracting visitors, virtual societies, advertising, one-to-one marketing, direct marketing, choosing ISP.
MODULE IV
Supply chain management - Fundamentals, elements of supply chain management, managing retail supply chains, order management cycle.
Electronic Data Interchange (EDI), benefits of EDI.

Reference Books:
1. The E-business (R) evolution by Daniel Amor, Pearson education.

ETC 8.3.2 EMBEDDED SYSTEMS

Lectures per week : 4 hours
Practical per week : 2 hours
Max. marks for theory paper : 100
Max. marks for orals : 50
Max. marks for sessionals : 25
Duration of paper : 3 hours
Total no of modules : 4
No. of questions from each module : 2
Min. no of questions to be answered from each module : 1
Total no. of questions to be answered in the paper : 5

MODULE I
The 8051 instruction set: Data movement instruction: External Data move, Code memory Read-Only-Data moves, Push and Pop opcodes, Data exchanges. Logic operation: Bit and Byte level, Rotate and Swap.

MODULE II
An 8051 Microcontroller design: A microcontroller design, testing the design, timing subroutines, lookup tables for the 8051, serial data transmission
MODULE III

An 8051 microcontroller Applications:
-interfacing of keyboard to 8051 based microcontroller system – Human factors, key switch factors, key configurations, programs for keyboards, a scanning program for small keyboards, interrupt-driven programs for small keyboards, program for a large matrix keyboard.
-interfacing LED and LCD – Seven-segment numeric display, intelligent LCD display.
-measurement of pulse width and frequency – Measuring frequency, pulse width measurement.
RTOS: Basics of real time operating systems, LCD Digital thermometer using RTOS.

MODULE IV

Introduction to PIC microcontrollers. CPU architecture and instruction set: Register file structure and addressing modes, CPU registers, instruction set, simple operations. Features of PIC microcontroller: Interrupt logic, IntService interrupt Service routine, loop time subroutine, RBO/INT external interrupt input, PORTB-Change Interrupts (Pins RB7:RB4), Timer 0,Timer 1, Timer 2, Pulse-Width-Modulated Outputs. I2C Bus for serial EEPROM.

Text books:

Reference books:
1. Programming and customizing the 8051 microcontroller – Myke Predko.
2. Programming and customizing PIC microcontrollers –Michael predko, Myke Predko.
3. PIC-micro microcontroller pocket reference.

ETC 8.3.3 TELECOMMUNICATIONS TRANSMISSION SYSTEM

Lectures per week : 3 hours
Tutorials per week : 1 hour
Practical per week : 2 hours
Max. marks for theory paper : 100
Max. marks for orals : 50
Max. marks for sessionals : 25
Duration of paper : 3 hours
Total no of modules : 4
No. of questions from each module : 2
Min. no of questions to be answered from each module : 1
Total no. of questions to be answered in the paper : 5

MODULE I

Introduction to Telephone Communication Systems:
The functions of the telephone network, the telephone exchange control, transmission, network terminology, other uses of the telephone network.
Electronic Telephones:
An introduction to electronic telephones, a typical electronic telephone

An introduction to digital networks:
Evolution of digital networks, digital transmission, the introduction of the exchange control by digital computer, the introduction of digital switching, the integration of digital switching and transmission, the introduction of common channel signaling, digital transmission over the subscriber’s line.

MODULE II

Common channel signaling:
Introduction to common channel signaling, the advantages of common channel signaling, common channel signaling systems, CCS terminology, correction of errors occurring in signaling units, structure of CCITT signaling system 7.
System X:
Introduction, system X local exchange, digital switching subsystem (DSS), other local exchange subsystems, synchronization, system X facilities.

MODULE III

Private digital telephone exchange systems:
Introduction to private systems, PBX architecture, basic PBX call processing.
Integrated services PBX (ISPBX):
Voice and data switching on a single exchange, using an ISPBX
The digital transmission hierarchy:
The digital transmission network, digital multiplexing techniques, practical 2-8Mbit/s muldex, the trans multiplexer.

MODULE IV

Private Digital Networks:
Introduction to private integrated voice and data networks, private digital networks, the operations of DPNSS, DPNSS data calls, permanent data calls, centrex and virtual private networks.

Textbooks:
4. Semiconductor Optoelectronic Devices by Pallab Bhattacharya, Prentice Hall of India Private Limited, New Delhi

Reference Book:
1. Telecommunication Switching Systems and Networks – Thiagarajan.

ETC 8.3.4 DIGITAL IMAGE PROCESSING

<table>
<thead>
<tr>
<th>Lectures per week</th>
<th>:3 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorials per week</td>
<td>:1 hour</td>
</tr>
<tr>
<td>Practical per week</td>
<td>:2 hours</td>
</tr>
<tr>
<td>Max. marks for theory paper</td>
<td>:100</td>
</tr>
<tr>
<td>Max. marks for orals</td>
<td>:50</td>
</tr>
<tr>
<td>Max. marks for sessionals</td>
<td>:25</td>
</tr>
<tr>
<td>Duration of paper</td>
<td>:3 hours</td>
</tr>
<tr>
<td>Total no of modules</td>
<td>:4</td>
</tr>
<tr>
<td>No. of questions from each module</td>
<td>:2</td>
</tr>
<tr>
<td>Min. no of questions to be answered from each module</td>
<td>:1</td>
</tr>
<tr>
<td>Total no. of questions to be answered in the paper</td>
<td>:5</td>
</tr>
</tbody>
</table>

MODULE I
Introduction: Digital Image representation, elements of digital image processing systems, elements of visual perception, structure of human eye, MTF of the visual system, the visibility function light luminance, brightness, contrast, monochrome vision model, colour representation, sampling, 2-D sampling, linearity and space invariance, point spread function and convolution, 2-D Fourier Transform, image quantization, colour vision model, temporal properties of vision.

Statistical properties: Histogram, mean, standard deviation, profile of different distributions, stochastic characterization of images.

MODULE II
Image Transform: One and two dimensional DFT, the discrete cosine transform, Hadamard transform, the Karhuen – Loeve transform, Haar, Slant and SVD types, transform domain and recursive filtering techniques of processing.

Image Enhancement: Contrast enhancement, spatial and frequency domain methods, point operation, contrast stretching, bit extraction, range compression, Histogram equalization, modification local enhancement, image smoothing spatial operations, filtering multispectral,
image enhancement, intensity and log ratios principle components, Pseudo-colour image enhancement.

MODULE III

Image restoration: Sources of degradation, inverse and wiener filtering, removal of blur caused by motion spins, maximum entropy, restoration in spatial domain, geometric transformation, spatial transformation, recursive and non recursive techniques of restoration.

Image Analysis: Edge detection, spatial feature and boundary extraction, boundary representation, region representation structure, shape features, texture, scene matching and detection, image segmentation, classification, image understanding.

MODULE IV

Image coding and image compression:
Need and scope for image data compression, image quality and entropy considerations, pixel coding, PCM entropy coding, run-length coding, bit plane encoding, predicting techniques, DPCM, adaptive technique, transform coding, bit allocation, interframes coding, colour and multispectral image coding, JPEG and MPEG standards.

Feature coding: Luminance contour coding, edge coding, texture coding, SVD coding, JPEG and MPEG standards.

Applications of Image Processing: Character recognition, diagram understanding, fingerprint classification, face recognition.

Textbook:

Reference books: