Second Year Computer Engineering

Semester III

- 3.1 Applied Mathematics III
- 3.2 Logic Design
- 3.3 Data Structures Using C++
- 3.4 Integrated Electronics
- 3.5 Computer Oriented Numerical Techniques
- 3.6 Electrical Technology

Semester IV

- 4.1 Discrete Mathematical Structures
- 4.2 Principles Of Programming Languages
- 4.3 Computer Organization
- 4.4 Design And Analysis Of Algorithms
- 4.5 System Analysis And Design
- 4.6 Electronic Instrumentation

CE 3.1 APPLIED MATHEMATICS III

MODULE 1

Linear Algebra: Types of matrices, adjoint, inverse, elementary transformations, normal form-ranksystems of equations AX = B and AX = 0, Linearly independent systems, Eigen values – eigen vectors, Cayley Hamilton Theorem, minimal equation, diagonalisation, functions of matrices.

MODULE 2

Probability Distributions: Definition, properties, discrete/continuous distributions binomial, Poisson, normal. Samples – tests on large samples, correlation and regression.

MODULE 3

Transforms: Laplace – Definition, properties, inverse, convolution – periodic functions, applications. Fourier transforms.

MODULE 4

Transforms: Fourier and Z transforms – Definition, properties, inverse, convolution – periodic functions, applications.

TEXT BOOKS:

- 1. A Text Book of Matrices Shanti Narayn, S. Chand & Company
- 2. Statistical Methods Gupta S.P, S. Chand & Sons.
- 3. System and Signal Analysis Chi Tsong Chen, Holt, Rinse Hart and Winston Inc. (Sections: 4.1 4.8, 5.1 5.6, 6.4 6.6 of T.B: 3)

REFERENCE BOOKS:

- 1. Advanced Engineering Mathematics Kreyazig Wiley
- 2. Engineering Mathematics Vol. III P. Kandasamy et all, S.Chand & Co., New Delhi.

CE 3.2 LOGIC DESIGN

MODULE 1

Number Systems and Codes: Number system binary codes, error detection and correction. Logic Gates: Basic gates, Secondary gates, Boolean algebra, De-Morgan's Law, NOR, NAND as universal gates, EX-OR gate.

MODULE 2

Boolean Algebra: Algebraic simplification, Karnaugh Map, Methods of simplification, Q.M. method. Arithmetic Logic Units: binary addition, binary subtraction, Half adder, Full adders.

MODULE 3

Flip flops: RS latches, Level clocking, D latches, edge triggered D Flip flop, edge triggered JK Flip-flop, JK Mast Slave flip flop. Registers and Counters: Buffer Registers, shift registers, Controlled shift registers, Ripple counters, Synchronous counters, Ring counters.

MODULE 4

Introduction to Synchronous Sequential Circuits: Finite state, Model, Synthesis of synchronous sequential circuits.

TEXT BOOKS:

- 1. Digital Principles and Applications A.P. Malvino, Donald P. Leach IV Edn, TMH
- 2. Digital Computer Electronics Malvino II Edn., TMH

REFERENCE BOOKS:

- 1. Switching and Finite Automata Theory Kohavi, II Edn., TMH
- 2. Digital Computer Design Rajaraman & Radhakrishna, III Edn., PHI
- 3. Digital Computer Design Principles M.R. Bhujade, Pitamber
- 4. Computer Architecture and Logic Design Thomas C. BArtee, TMH
- 5. Modern Digital Electronics R.P. Jain, II Edn., TMH.

CE 3.3 DATA STRUCTURES USING C++

MODULE 1

An overview of object oriented programming: Introduction to C++ programming, loops and decisions, structures, objects, classes operator overloading, inheritance, polymorphism, pointers, files, etc.

MODULE 2

Introduction to Data Representation and Data Structures: Arrays and applications. Stacks: Definition, Representation of stacks and applications. Queues: Definition, Representation of queues, circular queues and applications.

MODULE 3

List: Single linked list, linked stacks & queues other list structures like doubly linked list, circular linked list, examples and simulation. Trees: basic terminology, binary trees, representations, traversals. Graphs: basic terminology, representation of graphs, graph traversals.

MODULE 4

Sorting: Exchange sorts, selection and tree sorting, insertion sorts, merge & radix sorts. Searching: Basic search techniques like binary search, hashing. Introduction to advanced data structures.

TEXT BOOKS:

- 1. Data Structure Using C & C++ Yedidya Langsam, Moshej Augenstein, Aaron M. Tenenbaum, Prentice Hall of India.
- 2. Data Structures, Algorithms and Applications in C++ Sahni, MCH.

REFERENCE BOOKS:

- 1. Data Structures and Algorithms Alfred V. Aho, John e. Hopcraft & J.D. Ullman, Addision Wesley.
- 2. Data Structures and Program Design in C Robert L. Kruse, Prentice Hall of India.
- 3. Fundamentals of Data Structures Ellis Horowitz and Sartaj Sahni, Galgotia Publications.

CE 3.4 INTEGRATED ELECTRONICS

MODULE 1

Operational Amplifiers: Characteristics, features, basic circuits and applications. Waveform generators.

MODULE 2

Voltage Regulators: Definition, design and letter using IC 723, Lm 105, Regulated P.S. 555 timer & its configurations. D/A convertors, A/D convertors, multiplexers, demultiplexers, decoders, encoders.

MODULE 3

Characteristics and comparisons of major logic families: Realizations of logic functions, gates. Design of sequential & Combinational logic circuits with LSI & MSI components.

MODULE 4

Timing Issues: Clock generator, synchronization at system level. Semiconductor memories: memory classification, architecture and building blocks, ROM, Nonvolatile Read-Write memories, RAM. Memory peripheral circuitry: address decoders, sense amplifiers, drivers/buffers and their timing control. Design of PLA and 4 Mbit SRAM

TEXT BOOKS:

- 1. OpAmps & Linear Integrated Circuits Ramakant A. Gayakwad, II Edn., PHI
- 2. Digital Integrated Circuits, A Design Perspective Jan M. Rabaey, PHI
- 3. Microelectronics JAcob Milliman, TMH

REFERENCE BOOKS:

- 1. Integrated Electronics: Analog and Digital Electronic Circuits and Systems MIllman and Halkias, TMH.
- 2. Electronics for Scientist & Engineers Vishwanathan, Mehta and Rajaraman, PHI.
- 3. Introduction to System Design using Integrated Circuits B.S. Sonde, Wiley Eastern
- 4. Digital Principles & Applications Malvino & Leach, PHI
- 5. Microelectronics Jacob Millman, Arvin GRabel, II Edn., MGH

CE 3.5 COMPUTER ORIENTED NUMERICAL TECHNIQUES

MODULE 1

Errors and Approximations: Introduction, sources of errors, problems in computations, safeguards against errors, floating point arithmetic, absolute error, relative error, percentage error – calculations. Interpolation: Newton's Interpolation formulae, Lagrange's interpolation, Newton's Divided difference Interpolation formula.

MODULE 2

Solution of Transcendental and Polynomial equations in one variable: Newton Raphson method, Regula Falsi method, successive bisection, secant method, etc.

MODULE 3

Solution of Linear Equation: Gauss's Elimination method, Pivoting, Computation of Matrix inverse using Gauss Elimination, Gauss Jordan methods. Iterative algorithms – Jacobi, Gauss Seidal methods. Eigen values and eigen vectors.

MODULE 4

Numerical Integration: Trapezoidal rule & Simpson's rules, Romberg's formula. Numerical Differentiation: Newton's forward and Newton's backward difference formulae. Solution of ordinary differential equations Euler's methods, Runge Kutta methods, Predictor Corrector method.

TEXT BOOKS:

- 1. Numerical Algorithms E.V. Krishnamurthy and Sen, PHI
- 2. Introductory Methods of Numerical Analysis S.S. Shastry, PHI

REFERENCE BOOKS:

- 1. Computer Oriented Numerical Methods Rajaraman, PHI
- 2. First Course in Numerical Methods A. Ratson, MGH
- 3. Numerical Methods in Engineering and Science Dr. B.S, Grewal, Khana Publication

CE 3.6 ELECTRICAL TECHNOLOGY

MODULE 1

- Principles of electromechanical energy conversion
- DC Motor: principle, voltage equation, torque-equations, motor characteristics, speed control, starting
- Three Phase Induction Motor: Principle, construction, slip, torque-slip characteristics, starting, speed control.

MODULE 2

- Single phase Induction Motor: Principle of operation of split phase type, capacitor start motors.
- Stepper Motors: Types, principle of operation.
- Synchros: Construction, principle of operation and applications.
- Servomotors: DC servomotor, two-phase ac servomotor.

• Drives: Concept of an Electrical Drive, Classification, characteristics and braking of dc motors.

MODULE 3

• Working principle, construction, torque equations of the following analog instruments (a) PMMC (b) Moving iron (c) Electrodynamometer type

Shunts and multipliers for PMMC type instruments and extension of range,

- Electrodynamometer Wattmeter: construction, torque equation
- Induction type Energy meter: construction, torque equation

MODULE 4

- Potentiometers: DC potentiometer: slide wire type and Laboratory type (Crompton's Potentiometer), applications.
 - AC Potentiometer: Drysdale Polar type Potentiometer.
- AC bridges : for measurement of inductance, capacitance and frequency: Maxwell Bridge, Hay's Bridge, Owen's Bridge, Schering bridge, Wein's Bridge, Wagner's Earth bridge.
- Illumination: Definitions, laws of Illumination
- Electrical heating: advantages, principle of resistance heating, high frequency eddy current heating, dielectric heating.

TEXT BOOKS :

- 1. A Text Book of Electrical Technology-- B.L Theraja.(Vol II)
- 2. A Course in Electrical and Electronics Measurement and Instrumentation---A.K. Sawhney

- 1. Electrical Power : J.B. Gupta
- 2. A First Course on Electrical Drives: S.K. Pillai

CE 4.1 DISCRETE MATHEMATICAL STRUCTURES

MODULE 1

Set Theory: Relations, equivalence, ordered sets.

Functions: Relations:-binary, equivalence, partitions, partial ordering, lattices, pigeons holes principle.

MODULE 2

Algebraic structures: monoids, groups, rings, fields, vector spaces, integral domain-Homomorphisms, isomorphisms.

MODULE 3

Boolean Algebra: duality-properties-Boolean: lattices, functions, expressions, propositional calculus, design of digital networks, switching circuits, simplification.

Mathematical reasoning, induction, deduction, recurrence relations.

MODULE 4

Graph theory, paths, circuits, Eulerian, Hamiltonian paths, binary search trees, Spanning trees, transport networks.

TEXT BOOKS

1. Elements of Discrete Mathematics – C.L.Liu, McGraw Hill.

- 1. Discrete Structures, An introduction to Computer Sciences Norris F.R., Prentince Hall.
- 2. Discrete Mathematical Structures with Applications to Computer Sciences Tremblay J.P. and Manohar R., McGraw Hill, NY.
- 3. Discrete Mathematics in Computer Science-Stanant D.F. and Allister D.F., Prentice Hall.
- 4. Concepts in Discrete Mathematics Sahani S.Narosna, New Delhi.
- 5. Basic Graph Theory Parthasarathy K.R, TMH

CE 4.2 PRINCIPLES OF PROGRAMMING LANGUAGES

MODULE 1

Language Design Issues: Structure and Operation, Virtual computer, binding times, language Paradigms.

Language translation Issues: Program Language syntax, stages in translation; formal translation models.

Data types: Properties of types and objects, elementary data types structural data types.

MODULE 2

Encapsulation: Abstract data types encapsulation, by sub programs, type definitions, storage management.

Sequence Control: Implicit and Explicit sequence control, sequence control, sequence control for arithmetic; non arithmetic expressions, sequence control between structures.

MODULE 3

Sub program control: Sub program sequence control attributes of Data Control, shared data in subprograms.

MODULE 4

Characteristics and features of procedural languages, structural languages, logic programming languages with reference to suitable example of each.

Advances in language design

TEXT BOOK

1. Programming languages: Design and Implementation – Terrence W.Pratt, Marvin V.Zelkowig, PHI

- 1. Fundamentals of Programming Languages- Horowitz, Galgotia Pub.
- 2. Programming Languages Tucker A.B., ISE McGraw Hill.

CE 4.3 COMPUTER ORGANIZATION

MODULE 1

Computer arithmetic: Integer representation, integer arithmetic, floating point representation, floating point arithmetic.

Computer System: System buses, Interconnection structure, Bus interconnection

MODULE 2

Memory: Internal memory, external memory, memory organisation.

Input/Output devices.

MODULE 3

Instruction Sets: Characteristics and functions, addressing modes and formats(8086 based) CPU structure and functions.

MODULE 4

Control unit operations, hardwired implementation, microprogramed control.

RISC processors: Characteristics and architecture, pipelining

Introduction to parallel processing

TEXT BOOKS

1. Computer Organisation and Architecture: Designing for Performance - William Stallings, Fourth edition, Prentice Hall of India.

REFERENCE BOOKS

1. Computer Systems Architecture- M.Morris Mano, Prentice Hall of India.

- 2. Structured Computer Organisation Andrew S.Tanenbaum, Prentice Hall of India.
- 3. Computer Organisation V.C.Hamachar, L.G. Vianesic, S.G. Zaky, McGraw Hill International Students Edition.

CE 4.4 DESIGN AND ANALYSIS OF ALGORITHMS

MODULE 1

Algorithm analysis and complexity, dynamic storage management and garbage collection, Recursion, lower bound theory.

MODULE 2

Techniques for algorithm design & analysis: Divide and conquer, dynamic programming.

MODULE 3

Greedy algorithms, basic search and traversal techniques.

MODULE 4

Backtracking, NP hard and NP complete problems.

TEXT BOOKS

- 1. Fundamentals of Computer Algorithms E.Horowitz & S.Sahini, Galgotia publication.
- 2. Introduction to Algorithms T.H.Cormen, C.E. Leiserson, R.L.Rivest, PHI

- 1. The Design and Analysis of Computer Algorithms Aho Hopcraft & Ulman, Addison Wesley.
- 2. Algorithms Robert Sedjewick, Addison Wesley.
- 3. Fundamentals of Algorithms Brassord & Bratley, PHI

CE 4.5 SYSTEM ANALYSIS AND DESIGN

MODULE 1

System Design Overview: Systems Concepts and the Information Systems Environment, System development life cycle, role of System Analyst.

MODULE 2

System Analysis: Planning and initial investigation, information gathering, tools for structured analysis, feasibility study, cost/benefit analysis.

MODULE 3

System Design: Process and stages of system design, input/output and forms design, file organization and data base design.

MODULE 4

System Implementation: System testing and Quality assurance, Implementation and software maintenance, hardware/software selection and evaluation, project scheduling and software, security issues, recovery methods, codes and standards of behavior.

TEXT BOOKS

- 1. Systems Analysis and Design, Elias M.Awad, II Edn., Galkgotia
- 2. Introducing System Analysis and Design, Vol 1, Vol 2, Int. Edn., NCC

- 1. System Analysis and Design Methods, Jeffrey L.Whiten, & Lonnie D.Bentler, IV Edn., Galgotia.
- 2. Introduction to System Analysis and Design, Igor T. Hawrysziewycz, PHI.

- 3. Analysis and Design of Information Systems, V. Rajaraman, PHI.
- 4. Analysis and Design of Information Systems, J.A. Senn TMH

CE 4.6 ELECTRONIC INSTRUMENTATION

MODULE 1

Introduction: Measurement and errors, Systems of units of measurements, Standards of Measurements.

Electronic Instruments for measurement of basic parameters: Electronic multimeter, R meter, Digital Voltmeter, Vector impedence meter, R.F. power and voltage measurement.

MODULE 2

Oscilloscopes: Block diagram, CRT and circuits, Vertical deflection, delay line, multiple trace oscilloscopes, Probes and Transducers Oscilloscope techniques.

Signal generation: Sine wave, frequency synthesized, sweep frequency generators, pulse and square wave generators, function generators, audio frequency signal generators.

MODULE 3

Signal analysis: Wave analysers, harmonic distortion analysers & spectrum analysis.

Frequency counters and time interval measurements: Frequency counters, extending the range of frequency counter, Automatic and computing counters.

MODULE 4

Transducers: Classification of transducers, transducers for different physical quantities, strain gauges, displacement transducers, temperature measurements, photosensitive devices etc.

Analog and digital data acquisition systems: Instrumentation systems, interfacing transducers to electronic control and measuring systems, multiplexing.

TEXT BOOK

1. Modern Electonic Instrumentation and Measurement Techniques – A.D.Helfrick and W.D.Cooper, PHI

- 1. Electronic Instrumentation- H.S.Kalsi, TMH
- 2. A course in electrical and electronics measurement and Instrumentation A.K. Sawhney, Dhanpat Rai and Co.(pvt.) Ltd.
- 3. Electronic Measurement and Instrumentation Oliver and Cage, McGraw Hill