Semester III ECOMP 310 Mathematics - III

Course	Name of the Course	Scheme of Instruction Hrs. / week			Theory Exam Duration	Scheme of Examination						
Course Code						Marks				Total	Credi	
		L	Т	Р		тн	S	T W	Р	0	Total	ts
ECOMP 310	Mathematics - III	3	1		3	100	25	25	_	_	150	4

Course Objective:

The subject aims to equip the student with:

- 1. Mathematical tools necessary to formulate, solve and analyze engineering problems
- 2. An understanding of graph theory and matrix theory in order to apply them to problems arising in the field of engineering.
- 3. An understanding of Laplace transforms to solve problems arising in the field of engineering.
- 4. An understanding of Fourier transforms and Z- transforms to solve Engineering problems.

Course Outcome:

ECOMP 310.1	Demonstrate an understanding of various graph algorithms and apply the concepts of graph theory
ECOMP 310.2	Carry out matrix operations including inverses and determinants, demonstrate an understanding of linear independence, solve systems of linear equations, compute rank, Eigenvalues, Eigenvectors of a given matrix and diagonalize matrices
ECOMP 310.3	Compute Laplace transform and it's inverse and apply Laplace transform to obtain solutions of differential and integral equations
ECOMP 310.4	Calculate Fourier and Z- transforms and their inverses, apply Z- transform to solve difference equations and use the Fourier transform as a tool to solve integral equations

UNIT-1	
Graph Theory: Graphs and graph models, graph terminology and special types of	9 Hrs.
graphs, representing graphs and graph isomorphism, connectivity, Euler and	
Hamilton paths, shortest path problems.	
Trees: Introduction to Trees, applications of trees, tree traversal, Spanning Trees,	
Minimal Spanning Trees.	
UNIT-2	
Matrix Algebra: Matrices: Types, Determinants, Transpose and Inverse of Matrix.	10 Hrs.
Elementary transformations: Rank and Normal Form, Linearly Dependent and	
Linearly independence of vectors, Solving systems of Linear homogeneous and non-	
homogeneous equations.	
Eigenvalue and Eigenvectors, Diagonalization using Similarity transformations,	
Cayley-Hamilton theorem and its applications, Minimal Polynomial	
UNIT-3	
Laplace Transform: Definition. Existence conditions, properties, inverse Laplace	10 Hrs.
transforms. Laplace transform of periodic functions, Convolution theorem, Laplace	
transform of Dirac-Delta function, Application of Laplace transforms in solving	
linear differential equations with initial conditions and system of linear simultaneous	
differential equations	
UNIT-4	
Fourier Transform: Fourier Transform, Inverse Fourier transform, Fourier Sine	10 Hrs.
and Cosine transform, Convolution and its application.	
Z-Transform: Definition, region of convergence, properties, Z-transform on	
impulse function, Convolution theorem, application to difference equations	

	TEXT BOOKS
1	B. S. Grewal; Higher Engineering Mathematics; Khanna Publications, New Delhi
2	Swapan Kumar Sarkar; Discrete Mathematics; S. Chand Publication

	REFERENCE BOOKS
1	E. Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 10th Ed., 2015
2	Kenneth H. Rosen; Discrete Mathematics and Its Applications; Tata McGraw Hill (6th
	edition)

Students can be evaluated based on assignments / class tests / seminars / quiz / viva etc.

ECOMP 320 Network Analysis and Synthesis

C	Name of the Course	Scheme of Instruction Hrs. / week		Theory Exam Duration	Scheme of Examination							
Course Code					Marks				Total	Credi		
		L	Т	Р		тн	S	T W	Р	0	Total	ts
ECOMP 320	Network Analysis and Synthesis	3	1	_	3	100	25	25	_	_	150	4

Course Objective:

The subject aims to equip the student with:

- 1. Ability to analyse linear electrical networks and perform Time domain analysis of electrical networks
- 2. An understanding of graph theory and its application for network analysis
- 3. Ability to synthesize an electrical network and model it into any equivalent Two port network
- 4. An understanding of analysing and designing of attenuators
- 5. Ability to synthesize circuits using Foster and Cauer form

Course Outcome:

ECOMP 320.1	Explain the concepts related to electrical networks and graph theory
ECOMP 320.2	Apply network theorems, differential equations, and Laplace transforms to compute transient and steady state response of circuits
ECOMP 320.3	Analyse electrical networks to compute two port parameters, design resonant circuits and attenuators.
ECOMP 320.4	Design and synthesize electrical networks

UNIT-1	
Network Classification: Distributed and lumped, passive and active, time variable	10
and time invariant, symmetrical and asymmetrical networks.	Hrs.
Network Analysis: Mesh and nodal analysis (ac and dc sources), super-node and super-mesh analysis.	
Network Theorems (AC and DC analysis): Thevenin's theorem, Maximum	
power transfer theorem, Norton's theorem, Superposition theorem, Reciprocity	
theorem.	
UNIT-2	
Graph Theory: Basic definitions, Duality, Matrices associated with network	10
graphs: Incidence, Tieset, Cutset matrices.	Hrs.
Time- domain analysis: Network equations in time- domain, first and	
second order circuits (RL, RC and RLC circuits), Initial condition, Analysis of	
transient and steady state response to step and sinusoidal input.	1

UNIT-3	
Resonance: Series resonance, Impedance and Phase angle of series Resonant	10
Circuit, Band Width of an RLC circuit, selectivity and Q-factor of resonance	Hrs.
circuits. Parallel resonance- Band Width, selectivity and Q-factor of resonance	
circuits.	
Two Port Networks: Characterization in terms of Z, Y, H and ABCD parameters,	
Equivalent circuits; interrelationship between the two port parameters	
UNIT-4	
Impedance of two port networks: input, output, characteristic impedance, and	10
image impedances of two ports.	Hrs.
Elements of Network Synthesis: Hurwitz polynomials, Positive real functions,	
Reactance functions, RL and RC functions (Foster method and Cauer method).	
Attenuators: Classification, Analysis and design of T, pi, Lattice and Bridged T	
attenuator.	

	TEXT BOOKS
1	A. Sudhakar & P. Shyamohan; Circuits & Networks- Analysis and Synthesis; Tata
	McGraw-Hill.2006
2	M.E. Van Valkenburg; Network Analysis; 3e Pearson Education. 2015
3	D. Roy Choudhary; Networks & systems; New Age International Publishers.2005.

	REFERENCES
1	F. F. Chuo; Network Analysis and Synthesis; 2 nd edition, Wiley Eastern 2006
2	A. Chakrabarti; Circuit theory Analysis and Synthesis); Dhanpat Rai Publishing
	Company. 2018

 TERM WORK

 Students can be evaluated based on assignments / class tests / mini-project / seminars / quiz

 / viva / presentations / circuit simulations, etc.

ECOMP 330 Electronics Devices and Circuits

Course		Scheme of			Theory	Scheme of Examination						Credi
CourseCodeName of the Course		Instruction Hrs. / week		Exam Duration	Marks				Total			
		L	Т	Р		тн	S	T W	Р	0	Total	ts
ECOMP 330	Electronics Devices and Circuits	3	1		3	100	25	25		_	150	4

Course Objective:

The subject aims to provide the student with:

- 1. An understanding of quantitative and qualitative analysis of PN Junction diode and ability to analyze and design circuits using diodes.
- 2. Ability to perform DC analysis and AC small signal analysis for BJT biasing circuits and to perform DC analysis of JFET and MOSFET biasing circuits.
- 3. An understanding of multistage and large signal amplifier, feedback mechanism and its application in amplifier and oscillator circuits.
- 4. Ability to analyze and design integrator, differentiator, and multivibrator circuits.

Course Outcome:

ECOMP330.1	Explain the concept of qualitative and quantitative theory of PN Junction diode in semiconductors
ECOMP330.2	
ECOMP330.3	Examine various DC biasing circuits for BJT, JFET and MOSFET and perform small signal analysis using BJT hybrid and re models for various biasingconfigurations
ECOMP330.4	Analyze the multistage and large signals BJT amplifiers
ECOMP330.5	Analyze the different configurations of negative feedback in amplifier circuits and discuss the effect of negative and positive feedback on amplifiers and oscillators
ECOMP330.6	Analyze and design different types of oscillators, transistor switch and Multivibrator circuits.

UNIT-1	
Semiconductor Diode Characteristics: Qualitative theory of the PN junction,	9 Hrs.
Quantitative theory of the p-n diode currents, VI characteristic and temperature	
dependence	
Diode and Circuits: Load Line Analysis; Diode Approximations; Series,	
Parallel and Series-Parallel Diode Configurations; Clippers and clampers.	
Rectifiers and Filters: C, LC analysis and design, Voltage Regulation	

using Zener diodes.	
Linear Wave-shaping: RC Low pass and high pass circuits, Steady stateresponse	
of RC differentiator & integrating circuits to square wave.	
UNIT-2	
DC Biasing of BJT: Operating Point, transistor biasing circuits (Fixed-Bias	10 Hrs.
Emitter-Stabilized Bias, Voltage- Divider Bias, collector feedback and emitter	
follower circuit)	
BJT AC Analysis (for voltage divider bias): BJT transistor modeling, re	
transistor model, BJT small signal analysis using re transistor model, hybrid	
equivalent model, approximate hybrid equivalent circuit, complete hybrid	
equivalent model.	
FET Biasing: (JFETs and Depletion -type FET) Fixed-Bias, Self-Bias and	
Voltage-Divider Bias Configurations (both n- and p-channel), common gate	
configuration; Enhancement-Type MOSFETs-Feedback Biasing Arrangement,	
Voltage – Divider Biasing Arrangement	
UNIT-3	
Multistage Amplifiers: Cascading, Coupling techniques: RC, transformer and	10 Hrs.
direct, Cascode, Darlington pair.	
Power amplifiers: classification, Class A (Direct coupled with resistive load,	
transformer coupled with resistive load), Class B, Push-pull amplifier, crossover	
distortion, Class AB Push-pull amplifier and complementary Symmetry, Class C	
Negative feedback in amplifiers (using block diagram and typical transistor	
circuits for each configuration): Voltage series, voltage shunt, current series, and	
current shunt types of feedback. Effect of negative feedback on input and output	
impedance, voltage and current gains, bandwidth, noise and distortion.	
UNIT-4	
Positive feedback: Concept of feedback and stability, Barkhausen criterion, Types	10 Hrs.
of oscillators – Tuned LC, Hartley's, Colpitts, RC phase shift, crystal oscillator.	
BJT Switch: BJT as a switch, Junction & Diffusion Capacitance of a BJT,	
Improving switching times.	
Multivibrators: Analysis & Design of Basic BJT Monostable Multivibrator, BJT	
Bistable Multivibrator, BJT Astable Multivibrator and BJT Schmitt trigger.	

	TEXT BOOKS
1	R. Boylestad & L. Nashelsky; Electronic Devices and Circuits; PHI.
2	J.B Gupta; Electronic Devices and Circuits; S. K. Kataria & Sons.
3	J. Millman, C. Halkias & Satyabrata Jit; Electronic Devices and Circuits; McGraw Hill.
4	David Bell, Solid state Pulse circuits, Oxford University Press

REFERENCES					
1	A. Mottershead; Electronic Devices and Circuits; PHI.				
2	A. Anandkumar, Pulse digital circuits, PHI				
3	Anil K. Maini/ Varsha Agarwal, Electronic Devices and Circuits, WILEY				
4	David Bell, Electronic Devices and Circuits, Oxford University Press				

TERM WORK

Students can be evaluated based on assignments / class tests / mini-project / seminars / quiz / viva / presentations / circuit simulations, etc.

ECOMP 340 Digital Electronics

Course		Scheme of			Theory Exam Duration	Scheme of Examination						
Course	Course CodeName of the Course		Instruction Hrs. / week			Marks				Total	Credi	
		L	Т	Р		ТН	S	T W	Р	0	Total	ts
ECOMP 340	Digital Electronics	3	1	_	3	100	25	25	_	_	150	4

Course Objective:

The subject aims to provide the student with:

- 1. An understanding of various Number Systems & Codes along with Boolean algebra.
- 2. An ability to solve problems using Boolean algebra, K-maps and VEM
- 3. An ability to design combinational and sequential circuits.
- 4. An understanding of digital Logic families

Course Outcome:

ECOMP340.1	Perform interconversion of different number systems and perform arithmetic operations using 1's and 2's compliments
ECOMP340.2	Solve Boolean expressions using Boolean algebra, K-maps and VEM and
	implement them using logic gates
ECOMP340.3	Design and implement any given combinational circuits
ECOMP340.4	Explain different flip flops, registers and their application
ECOMP340.5	Design and implement sequential circuits and compare the characteristics of
	Digital Logic families

UNIT-1	
Number Systems & Codes: Decimal, Binary, Hexadecimal, Octal systems;	10 Hrs.
Interconversions, Signed & Unsigned Binary numbers, Complements	
Binary Arithmetic: Addition & Subtraction using 1's & 2's complements. Binary	
Codes-Decimal codes (BCD, Excess-3, 8421, 2421), Error Detection codes (Parity	
generation & Detection), Reflected code, Alphanumeric codes (EBCDIC, ASCII),	
Study of Binary logic with logic gates.	
Boolean Algebra: Postulates & Theorems, Boolean functions and their Algebraic	
manipulation, Canonical & Standard forms, Minterms & Maxterms.	
Simplification of Boolean functions: K-maps, POS & SOP simplification and their	
inter conversions, NAND & NOR implementation, Plotting & Reading of K-map	
using VEM.	
UNIT-2	•

Combinational Logic : Design Procedure for Combinational logic circuits, Design	10 Hrs.	
& Analysis of Half Adder, Full Adder, Half Subtractor, Full Subtractor, Code		
Conversion, binary Parallel Adder, Look-ahead Carry generator, Decimal Adder		
(BCD Adder), Magnitude Comparator, Decoders, Combinational logic		
implementation, Demultiplexers, Encoders, Multiplexers, Boolean function		
implementation with multiplexers, Design of seven segment display, Parity		
generator, checker.		
Flip-flops: Basic flip-flop circuit, Clocked RS flip-flop, D flip-flop, JK flip-flop, T		
flip-flop, Triggering of flip-flops, Master Slave flip-flop, Edge triggered flipflops:		
their schematic symbols, truth table & Excitation table, conversion between		
different types of flip flops		
UNIT-3	10 Hrs.	
Shift Registers: SISO, SIPO, PISO, PIPO, Bidirectional shift register, Universal		
shift register, Applications of shift registers.		
Asynchronous Counters: Ripple up counters, ripple down counters, ripple up-		
down counters (using positive edge and negative edge triggering), Mod n		
Asynchronous counters.		
Synchronous counters: Design of synchronous counters, Synchronous up		
counter, synchronous down counter, synchronous up-down counter, Synchronous		
Mod n Counters, Ring counter, Johnson counter, Applications of counters		
UNIT-4		
Sequential Circuits: Design procedure for sequential circuits using state diagrams,	9 Hrs.	
state table, state equations, state reduction and assignment, Circuit implementation,		
Moore & Mealy Machine. Finite state machine.		
Digital Logic Families: Characteristics of Digital ICs, TTL-Operation of TTL		
NAND gate, Active pull-up, Open Collector output, Wired AND, Schottky TTL,		
ECL		

	TEXT BOOKS					
1	M. Morris Mano; Digital Logic and Computer Design; PHI. 2016					
2	Anand Kumar; Fundamentals of Digital Circuits; 4e PHI. 2016					
3	R P JAIN ;Modern Digital Electronics ; 4e,Tata Mc Graw Hill					
4	Thomas Floyd; Digital Fundamentals - A Systems Approach; 11e Pearson Education. 2015					

	REFERENCES				
1	D. Leach, A. P. Malvino, G. Saha; Digital Principles & Applications; 8e Tata				
	McGraw-Hill.2014				
2	William Fletcher; An Engineering Approach to Digital Design; PHI. 2009				
3	Vincent P. Heuring, Harry F. Jordan, T.G. Venkatesh; Computer Systems Design				
	and Architecture, 2e PHI 2012				

TERM WORK Students can be evaluated based on assignments / class tests / mini-project / seminars / quiz / viva / presentations / circuit simulations, etc.

ECOMP 350 Data Structures and Algorithms using C++

Course			heme		Theory		Schen	ne of l	Exar	ninati	ion	
Course Code Name of the Course		Instruction Hrs. / week		Exam Duration	Marks				Total	Credi		
		L	Т	Р		ТН	S	T W	Р	0	Total	ts
ECOMP 350	Data Structures and Algorithms using C++	3	_	_	3	100	25	_	_		125	3

Course Objective:

The subject aims to provide the student with:

- 1. Ability to understand the generic principles of object oriented programming using C++
- 2. An ability to plan, design, execute and document sophisticated object oriented programs to handle different computing problems
- 3. An ability to use data structures as the foundational base for computer solutions to engineering problems
- 4. An ability to plan, design, execute and document sophisticated technical programs to handle various sorts of data structures using object oriented principles

Course Outcome:

ECOMP350.1	Illustrate the concept of object oriented programming
ECOMP350.2	Demonstrate the concepts of function overloading, operator overloading,
	Inheritance, Pointers, Templates and Exception Handling
ECOMP350.3	Demonstrate the use of data structures like linked lists, stacks and queues.
	and complex data structures like trees and graphs
ECOMP350.4	Illustrate searching and sorting techniques

UNIT-1								
Object Oriented Programming: Basic concepts and benefits of OOP, Basic user-								
defined and derived data types. Reference variables, Arithmetic and logical								
operators, scope resolution and memory management operators. Expressions and								
control structures. Functions in C++, Classes & Objects, Constructors &								
Destructors								
UNIT-2								
Operator Overloading: Definition, Overloading unary and binary operators,	10 Hrs.							
manipulation of strings								
Inheritance: derived classes, Types of inheritance, constructors in derived classes,								
nesting of classes								
Pointers: pointers to objects, this pointer, pointers to derived classes. Virtual								
functions								

Templates: Class templates & Function templates. Exception handling	
UNIT-3	
Linked list: Single, Doubly, Circular linked lists	10 Hrs.
Stacks: as an array and linked list, applications of stacks	
Queues: as an array and linked list, Circular	
Trees: Traversal of binary tree, BST, operations on BST, Reconstruction of Binary	
tree	
UNIT-4	
Graphs: Definitions and Terminology, DFS & BFS, Spanning Tree	9 Hrs.
Searching: Linear search, Binary search	
Sorting: Bubble sort, selection sort, Quick sort, Insertion sort, Merge sort, Heap	
sort	

	TEXT BOOKS									
1	Object Oriented Programming with C++ by E. Balagurusamy.									
2	Data Structures using C++ by Yeshwant Kanetkar, BPB Publications									
3	Data Structures using C++ by Tenenbaum									

	REFERENCES								
1	Object Oriented Programming in Turbo C++ by Robert Lafore								
2	Mastering C++ by Venugopal, Rajkumar, Ravishankar								
3	Let Us C++ by Yeshwant Kanetkar								

ECOMP 360 Analog and Digital Electronics Lab

Course			heme		Theory Exam	5	Schen	ne of I	Exam	inati	ion	
Course Code	Name of the Course	Instruction Hrs. / week			Duration	Marks Total			Total	Credi		
		L	Т	Р		ТН	S	T W	Р	0	1 otai	ts
ECOMP 360	Analog and Digital Electronics Lab	_		2	-	-	-	_	25	_	25	1

Course Objective:

The subject aims to provide the student with:

Part A: Analog Electronics

To understand the concepts, working and characteristics of Diodes, BJT and FET Transistors, amplifiers, and biasing techniques of transistors

Part B: Digital Electronics

- 1. An understanding of the basics of digital electronics
- 2. An ability to design basic logic circuits, combinational and sequential circuits

Course Outcome:

Part A: Analog Electronics

Upon completion of the course, students will be able to

ECOMP360.1	Verify the working of different diodes, transistors, CRO probes and
	measuring instruments. Identifying the procedure of doing the experiment.
ECOMP360.2	Design the circuits with basic semiconductor devices (active & passive
	elements), measuring instruments & power supplies that serve many practical
	purposes.
ECOMP360.3	Construct, analyze and troubleshoot the designed circuits.
ECOMP360.4	Measure and record the experimental data, analyze the results, and preparea
	formal laboratory report.

Part B: Digital Electronics

Upon completion of the course, students will be able to

ECOMP360.5	Verify the working of basic gates and Universal gates
ECOMP360.6	Apply Boolean laws to simplify and implement digital circuits
ECOMP360.7	Design and implement combinational circuits and Sequential circuits
ECOMP360.8	Verify the operation of counters, shift registers

Note: At least 10 experiments should be conducted from Part A and B. (Suggestion: Conduct first five from Part A and Part B for better understanding of the course)

Part A: Analog Electronics

- 1. Analysis and Design Filters
- 2. Analysis and Design Amplifiers using BJT (Class A/B/C/ Push Pull)
- 3. Analysis and Design Oscillators (RC & LC/ Colpitt / Hartley)
- 4. Analysis and Design of Multivibrators (Monostable/ Astable / Bistable) using BJT
- 5. Analysis of Integrators and Differentiators
- 6. Design RC-coupled Amplifier
- 7. Design Transformer coupled Amplifier
- 8. MOSFET biasing circuits
- 9. Design Schmitt trigger using BJT

Part B: Digital Electronics

- 1. Study of Logic Gates and Performance of Universal Gates
- 2. Realization of Boolean expressions in SOP & POS forms
- 3. Half Adder, Full Adder
- 4. Multiplexer & Demultiplexer
- 5. Study of SR & JK Flip-Flop and conversion of one FF to another
- 6. Design of Combinational Logic Circuits
- 7. Half Subtractor, Full Subtractor
- 8. BCD Adder
- 9. Encoder & Decoder
- 10. Magnitude Comparator
- 11. Parity generators and checkers
- 12. Code converters
- 13. Ring & Twisted Ring Counter
- 14. Binary Asynchronous Counter
- 15. Synchronous UP/DOWN Counter Design
- 16. SISO, SIPO Shift register
- 17. Universal Shift Register

The total marks for the practical exam are 25. Following guidelines can be followed for conducting the practical examination to maintain the uniformity across the colleges under the GOA University.

- Question1 from PART A (10 Marks)
- Question2 from PART B (10 Marks)
- Viva (05 Marks)
- Submission of practical file is mandatory

ECOMP 370 Data Structures and Algorithms using C++ Lab

Commo			heme		Theory		Schen	ne of I	Exam	inati	ion	
Course Code	Name of the Course		structi s. / wo		Exam Duration	Marks				Total	Credi	
		L	Т	Р		тн	S	T W	Р	0	Totai	ts
ECOMP 370	Data Structures and Algorithms using C++ Lab	_	_	2	-	-	-	-	25	_	25	1

Course Objective:

The course aims to provide the student with:

- 1. Ability to understand the generic principles of object oriented programming using C++.
- 2. An ability to plan, design, execute and document sophisticated object oriented programs to handle different computing problems
- 3. An ability to use data structures as the foundational base for computer solutions to engineering problems.
- 4. An ability to plan, design, execute and document sophisticated technical programs to handle various sorts of data structures using object oriented principles

Course Outcome:

Upon completion of the course, students will be able to

ECOMP370.1	Implement the concepts of classes, objects, friend function, Constructor and
	Destructor
ECOMP370.2	Implement the concepts of polymorphism, Inheritance, Templates and
	Exception Handling
ECOMP370.3	Implement linked lists, stacks and queues
ECOMP370.4	Implement searching and sorting techniques.

List of Experiments:

Note: At least 10 experiments should be conducted from the list of experiments.

- 1. Classes and objects
- 2. Function overloading
- 3. Operator Overloading
- 4. Constructor and Destructors
- 5. Friend function and friend classes
- 6. Inheritance
- 7. Templates
- 8. Implementation of singly/doubly/circular linked list
- 9. Implementation of stack using array/ linked list
- 10. Implementation of queue using array/linked list

- 11. Implementation of sorting technique
- 12. Implementation of searching technique

The total marks for the practical exam are 25. Following guidelines can be followed for conducting the practical examination to maintain the uniformity across the colleges under the GOA University.

- Question1 can be easy (10 Marks)
- Question2 can be difficult (10 Marks)
- Viva (05 Marks)
- Submission of practical file is mandatory

HM012 Technical Writing and Professional Communication

C			heme		Theory		Schen	ne of l	Exar	ninati	ion				
CourseCodeName of the Course		Instruction Hrs. / week		Exam Duration	Marks				Total	Credi					
		L	Т	Р		тн	S	T W	Р	0	1 otai	ts			
HM012	Technical Writing and Professional Communication	1	1	_				75	_	_	75	2			

Course Objective:

The course aims to:

- 1. Acquaint the students with basic concepts, process of technical communication
- 2. Enhance communication skills by giving adequate exposure in Listening, Speaking, Reading, and Writing skills
- 3. Improve effective communication and interpersonal skills in life and at workplace
- 4. Build multidisciplinary approach towards all life tasks and life learning

Course Outcome:

HM012.1	Demonstrate precise language skills with suitable vocabulary and apt style
HM012.2	Develop life skills/interpersonal skills to progress professionally
HM012.3	Apply traits of suitable candidature for a job/higher education
HM012.4	Deliver formal presentations and effectively implementing the verbal and non-
	verbal communication. skills

UNIT-1 Communication Foundations And Analysis				
Process of Communication, Importance of Listening, Speaking, Reading, Writing,	11 Hrs.			
Principles of Communication, Overcome Barriers to Communication,				
Conversational Skills, Organizational Communication, Culture and				
Communication, Communicating Electronically - Webpage Communication,				
Voice and Wireless Communication, Email Communication, Group				
Communication - Characteristics of Effective Groups, From Groups to Teams,				
Group Discussion, Meeting Management, Technical Writing - Elements of				
Effective Writing, Grammar – Framework of English, Architecture of Sentence,				
Common Problems with English, Technical Reports, Technical Proposals, Formal				
Letters, Research Papers, and Technical Descriptions				
UNIT-2 Personality Development				
SWOC Analysis, Emotional Intelligence, Leadership, Time Management, 3 Hrs.				
Motivation. Goal Setting, Teamwork and Collaboration, Critical Thinking and				
Problem Solving, Professional Attitude, Persuasion, Anxiety and Stress				
Management, Social Responsibility				
UNIT-3 Career Development				

Career Plan, Job Application Letter, Resume Building, Interviewing Skills,	7 Hrs.			
Personal Networking and Branding, Build Professional Portfolio				
UNIT-4 Public Speaking				
Build Confidence and Overcome Nervousness, Use of Visual Aids, Craft and	5 Hrs.			
Impactful Speech, Design and Deliver Impactful Presentations				

Term Work						
Type of Activity Numb		er		Marks allotted		
Assignments	08			75		
Total				75		
	Tu	torials				
Unit and Topic	Unit and Topic Hours Marks allotted as Term Wor					
01: Group Discussion		05		10		
03: Interview Skills (Mock Interviews)		05		10		
04: Presentations		03		10		

Assignments						
Unit Number and Topic	Sub-Topic	Number of	Marks			
		Assignments	allotted			
01: Communication	Email Writing	1	05			
Foundations and Analysis	Group	1	10			
	Discussion	1	10			
	Proposal Writing	1	10			
	Report Writing					
02: Personality	SWOC Analysis	1	10			
Development	-					
03: Career Development	Resume Building	1	10			
_	Interviews Skills	1	10			
04: Public Speaking	Presentations	1	10			
	Total	08	75			

*Note: The topics marked in bold are assignments to be done during Tutorials.

	TEXT BOOKS
1	Technical Writing and Professional Communication for non-native speakers of English.
	Thomas N. Huckin and Leslie A. Olsen. McGraw Hill
2	Technical Communication – Principles and Practice. Meenakshi Raman and Sangeeta
	Sharma. Oxford University Press. 2016. 3 rd Edition
3	BCOM. Lehman, Dufrene, Sinha. Cengage Learning. 2016. 2 nd Edition
4	Personal Development for Life and Work. Masters and Wallace. Cengage Learning. 2012.
	10 th Edition
5	Mastering Communication. Nicky Stanton. Palgrave Master Series. 2009. 5th Edition
6	Communication Skills. Meenakshi Raman and Sangeeta Sharma. Oxford University Press.
	2017. 2 nd Edition
7	Effective Technical Communication. Ashraf Rizvi. Tata McGraw Hill. 2014

Semester IV ECOMP 410 Mathematics IV

Course			heme struct		Theory Exam		Schen	ne of l	Exar	ninati	ion	
						Marks				Total	Credi	
		L	Т	Р		ТН	S	T W	Р	0	Total	ts
ECOMP 410	Mathematics IV	3	1		4	100	25	25			150	4

Course Objective:

- 1. To build the strong foundation in the field of Mathematics needed for the field of Electronics and computer Engineering.
- 2. To acquire the knowledge of Computation techniques and its applications.
- 3. To develop the solutions using the mathematical logic and the graph theory techniques

Course Outcome:

ECOMP 410.1	Apply the concepts of sets, functions and congruence in their engineering problems
ECOMP 410.2	Solve various problems using Logic and the proofing techniques
ECOMP 410.3	Demonstrate problem solving using different counting techniques
ECOMP 410.4	Investigate problems & arriving decisions using Binomial distribution,
	Poisson distribution, Uniform distribution, Normal distribution and
	Exponential distribution
ECOMP 410.5	Make decisions using large sampling testing- Z-test for proportion, mean
	and variance

UNIT-1 Sets, Relation & Functions and Integers		
Set Theory: Sets, Set Operations, Relations and their properties, Equivalence	10 Hrs.	
Relations, partial orderings, Posets.		
Functions: One-to-One and Onto Functions, Inverse Function, Composition of		
functions, some important functions in computer science.		
Integers: Integers and division (excluding applications of congruences and		
cryptology), primes and greatest common divisors, Euclid's algorithms for		
computing g.c.d. Congruences-Linear Congruence, Chinese reminder theorem,		
Fermat's little theorem.		
UNIT-2 Propositional Calculus, Boolean Algebra and Method of Proofing		
Propositional Calculus: Propositional logic, propositional equivalences,		
predicates and quantifiers (with one variable only), rules of inference.		
Boolean Algebra: Basic Operations, Boolean functions, Sum of Product and		
Product of sums form, Normal Forms, Canonical Form.		
Mathematical Induction: Principle of Mathematical Induction and applications		
UNIT-3 Counting Techniques		

 Counting: The basics of counting, permutations and combinations, binomial coefficients, pigeonhole principle. Advanced Counting Techniques: Inclusion-exclusion principle, applications of inclusion-exclusion principle, generating functions, and Recurrence relations, solving linear recurrence relations using iteration method, characteristic roots and generating functions 		
UNIT-4 Probability and Statistical Inference theory		
Review of Probability theory.Random variables- Discrete random variable and continuous random variable, moments, moment generating function (MGF), distribution function (CDF), Standard Distributions-Binomial Distribution, Poisson Distribution, Uniform distribution, Normal Distribution, and Exponential distribution.10 HrsSampling Theory, Large Sample tests - Z-test for proportion, mean and standard deviation2.10 Hrs		

	TEXT BOOKS
1	J. P. Tremblay and R. Manohar, McGraw Hill; Discrete Mathematical Structures with
	Applications to Computer Science; New York McGraw Hill
2	Kenneth H. Rosen; Discrete Mathematics and Its Applications; Tata McGraw Hill (6th
	edition).
3	Ronald E. Walpole, Raymond H. Myers; Probability & Statistics for Engineers & Scientists
	(9th edition), Pearson Education Limited

	REFERENCES					
1	1 Swapan Kumar Sarkar; Discrete Mathematics; S. Chand Publication					
2	2 Dr. D. S. C; Discrete Mathematical Structures; Prism Books Pvt. Ltd					
3	Murray R. Spiegel, Larry J. Stephens; Theory and problems of Statistics					

ECOMP 420 Computer Organization and Architecture

Commo			heme		Theory		Schen	ne of l	Exar	ninati	ion	
CourseCodeName of the Course		Instruction Hrs. / week		Exam Duration	Marks				Total	Credi		
		L	Т	Р		тн	S	T W	Р	0	Total	ts
ECOMP 420	Computer Organization and Architecture	3	1		4	100	25	25	_		150	4

Course Objective:

- 1. To understand the structure, function and characteristics of computer systems
- 2. To identify the elements of instructions sets and their impact on processor design.
- 3. To explain the function of each element of a memory hierarchy
- 4. To identify and compare different methods for computer I/O.

Course Outcome:

ECOMP420.1	Identify high performance architecture design and perform different
	computer arithmetic operations
ECOMP420.2	Create an assembly language program to program a microprocessor system
ECOMP420.3	Categorize memory hierarchy and its impact on computer cost/performance
ECOMP420.4	Design a pipeline for consistent execution of instructions with minimum
	hazards
ECOMP420.5	Articulate design issues in the development of Multiprocessor organization
	& architecture

UNIT-1	
Introduction to Computer Organization: Computer components, Functions,	10 Hrs.
interconnection Structure, Bus Interconnection, Register organization, Instruction	
Cycle	
Computer Arithmetic: Integer Arithmetic: Addition, Subtraction, Multiplication	
unsigned, signed (Booths Algorithm), Division- unsigned, signed. Floating-Point	
Representation: IEEE 32 bits, 64 bits. Floating-Point Arithmetic: Addition,	
Subtraction, Multiplication, Division.	
UNIT-2	
Microprocessors: Organization of Microprocessor-Based system, Pin description	10 Hrs.
and Internal architecture of Intel 8085A microprocessor: 8085 Programming model	
Programming the 8085:	
8085 Machine Cycles and Bus Timings: Opcode fetch, memory and I/O read/write	
Instruction Set and ALP: Addressing modes; Data transfer operations, arithmetic	
operations, logic operations, branch operations, Counters and time delays.	
UNIT-3	

Memory System: Basic concepts, Characteristics, Hierarchy, Semiconductor RAM Memories, Internal Organization of Memory Chip, Read-Only Memories. Cache Memory Principles, Elements of Cache Design, Mapping functions, Replacement Algorithm, Virtual Memories. Input/Output: External Devices, I/O Modules, Programmed I/O, Interrupt-Driven	10 Hrs.		
I/O, Direct Memory Access			
UNIT-4			
Instruction Pipelining: Strategy, Performance and Hazards, RISC CPU	9 Hrs.		
Architecture: Instruction Execution Characteristics, Use of Large Register File,			
Compiler based register optimization, Reduced Instruction Set Architecture, RISC			
v/s CISC			
Control Unit Operation: Micro Operations, Control of the CPU, Hardwired			
Implementation.			
Micro programmed Control: Basic Concepts, Microinstruction Sequencing,			
Microinstruction Execution.			

TE	XTBOOKS
1	William Stalling, "A textbook of Computer Organization and Architecture", Edition VI
2	Carl Hamacher, Zvonko Vranestic, Safwat Zaky, "Computer Organization", Edition V,
	McGraw-Hill
3	David A. Patterson, John L. Hennesy, "Computer Organization And Design", Edition III
4	Gaonkar R. S., "Microprocessor Architecture, Programming and Applications", Edition V,
	Penram International, 2007

RE	CFERENCE BOOKS
1	Tannenbaum, "Structured Computer Organization", Pearson Education, 2002
2	Douglas V. Hall, Microprocessors and Interfacing

3 M. Morris Mano ; A textbook of Computer Organization and Architecture

ECOMP 430 Analog Circuit Design

Course Code	Name of the Course				Credi							
		L	Т	Р		тн	S	T W	Р	0	Total	ts
ECOMP 430	Analog Circuit Design	3	1		4	100	25	25		_	150	4

Course Objective:

This course introduces the theoretical & circuit aspects of Op-amp, which is the backbone for the basics of Analog circuits.

Course Outcome:

ECOMP430.1	Infer the DC and AC characteristics of operational amplifiers and its effect
	onoutput and their compensation techniques
ECOMP430.2	Explain and design the linear and non-linear applications of an opamp and
	special application ICs
ECOMP430.3	Explain and compare the working of multivibrators using special
	application IC 555 and general purpose opamp
ECOMP430.4	Illustrate the function of application specific ICs such as Data Converters,
	Voltage Regulators, OLL and its application in communication

UNIT-1				
Differential Amplifiers: Differential amplifiers, ac and dc analysis, FET	9 Hrs.			
differential amplifier, constant current bias, current mirror circuit.				
Basics of Op-Amp: Functional block diagram of Op-amp,op-amp parameters,				
definitions, measurements, equivalent circuit of Op-amp and voltage transfer curve,				
open loop inverting, non- inverting, differential amplifier. Disadvantages of open				
loop op-amp				
Frequency response and methods of frequency compensation, offset compensation,				
closed loop inverting and non-inverting amplifiers, voltage follower, V-I & I-V				
converter				
Applications of op-amp: Differentiator, integrator, summing scaling and				
averaging amplifier				
UNIT-2				
Applications of Op-Amp	10 Hrs.			
Instrumentation amplifier, precision rectifier, log and antilog amplifier. Op-Amps				
as comparators, zero crossing detectors, Schmitt trigger, comparator characteristics,				
limitations of comparator, sample and hold circuit.				
Advantages of active filter, Butterworth low pass, high pass, band pass, band reject				
filter, design problems.				
Square wave generator, triangular wave generator, Wien bridge oscillator, Phase				
shift oscillators, design problems				

UNIT-3			
Voltage Regulators:	10 Hrs.		
Specifications & functional block diagrams of IC 723, Design of IC 723 as high			
and low voltage regulators.			
Specifications& working of three terminal regulators-IC78XX, 79XX, LM309,			
LM317 voltage regulator, principle and working of switching mode regulators,			
tracking regulator			
Introduction to resolution and accuracy in convertors, quantization error.			
ADC and DAC: Principle of successive approximation, successive approximation			
ADC. Binary weighted resistors and R-2R resistor ladder design problems,			
specifications, functional block diagrams of 0809 & 0808. Flash types ADCs			
UNIT-4			
Voltage controlled oscillator IC566: block diagram of IC566.			
PLL: Basic principles of phase-locked loop and block diagram, transfer			
characteristics of PLL, lock range and capture range (no derivations). Applications			
of PLL as frequency multiplier, AM demodulation, FM demodulation, Study of			
PLL IC 565 and design problems.			
IC 555: Functional block diagram and specification, modes of IC 555, applications			
of IC 555 as monostable and astable multivibrator, design problems, modification			
for 50% duty cycle. Applications of IC 555 as VCO, missing pulse detector,			
frequency divider, PWM,			
IC 8038 and its applications in waveforms generation.			

TEXTBOOKS

1	Ramakant A. Ga	vakwad: Op-Am	ps and linear integrated	circuits; Pearson 2015
_				

2 K. R. Botkar; Integrated Circuits; Khanna Publishers.2004

RF	CFERENCE BOOKS
1	J. Millman, C. Halkias, C. Parikh; Integrated Electronics: Analog and Digital Circuits
	and Systems; 2ed, McGraw Hill. 2017
2	S. Franco; Design with operational amplifiers and analog integrated circuits; 3ed
	McGraw Hill. 2001
3	Tony Chan Carusone, David Johns, Kenneth Matins; Analog Integrated Circuit
4	Design; 2e, John Wiley & Sons, 2013
5	Gray Paul R., Meyer, Hurst, Lewis; Analysis and Design of Analog Integrated
	Circuits; 5ed, Wiley India Pvt Ltd
6	K. Michael Jacob; Applications and Design with Analog Integrated Circuits; 2ed,
	PHI
7	S. Salivahana, V.S.K. Bhaskara, Linear Integrated Circuits, Mc Graw Hill

Note: Term work of Analog circuits may be carried out using the reference NPTEL course given below

https://archive.nptel.ac.in/content/syllabus_pdf/117108038.pdf

G		Scheme of Instruction			Theory							
Course Code	Name of the Course		struct	-	Exam Duration	Marks		Total	Credi			
		L	Т	Р		тн	S	T W	Р	0	1 otal	ts
ECOMP 440	Database Management Systems	3	_	_	3	100	25	_			125	3

ECOMP 440 Database Management Systems

Course Objective:

- 1. Introduction of basics of database management system like SQL, ER model, transaction processing- concurrency control for effective database design
- 2. Understand use of the latest technology in database systems with schemaless versions to cater growing demand of modern applications

Course Outcome:

ECOMP440.1	Demonstrate fundamentals of data models and to represent a database										
	system using ER diagrams										
ECOMP440.2	Device SQL and normalization techniques in database application										
ECOMP440.3	Apply transaction processing & concurrency control mechanism for										
	database problems										
ECOMP440.4	Analyze how advanced schema less databases differ from traditional										
	databases										

UNIT-1						
Introduction: Characteristic of Database approach, advantages of using the DBMS						
approach, Three schema architecture, Data Models.						
Entity–Relationship Model: Entity –Relationship Model, Constraints, removing						
redundant attribute in entity set, Entity-Relationship diagram.						
The Relational Model: Relational model concepts, Constraints, and relational						
Database schema						
Relational Algebra: Unary Relational Operations: SELECT and PROJECT,						
Relational Algebra Operations from Set theory						
Binary Relational Operations: JOIN and DIVISION, Aggregate functions, and						
Grouping.						
UNIT-2						
Extended ER Model: Reduction to relational schema, Extended-ER features.						
Basic SQL: SQL Data Definition and Data Types, Specifying Constraints in SQL,						
Basic Retrieval Queries in SQL, INSERT, DELETE and UPDATE statements in						
SQL.						

•
10 Hrs.
10 Hrs.

TE	XTBOOKS
1	"Fundamental of Database systems", Elmasri Ramez, Navathe Shamkant 7 th Edition
	Pearson 2018 ISBN:-978-8131716250
2	"Database system concepts", Abraham Silberschatz, Henry F.korth, S. Sudarshan 6 th
	edition, McGraw Hill, 2013

"Demystifying NoSQL", Seema Acharya, ISBN: 9788126579969, WILEY, 2019
 "MongoDB Complete Guide", Manu Sharma, BPB Publications

ECOMP 450 Java Programming

Course		Scheme of Theory Scheme Instruction Exam	ne of l	Exar	ion	Credi						
Code	Name of the Course	Hrs. / week		Duration	Marks					Total		
		L	Т	Р		ТН	S	T W	Р	0	Total	ts
ECOMP 450	Java Programming	3		_	3	100	25	_	_	_	125	3

Course Objective:

- 1. To learn designing and development of JAVA applications using OOP concepts
- 2. To learn back end connection and utilization of schema based as well as schema less databases

Course Outcome:

ECOMP450.1	Write programs using basic features of Java and demonstrate the use of
	classes, object, packages and collection framework using Java
ECOMP450.2	Illustrate and implement exception handling, multithreading and event
	handling
ECOMP450.3	Utilize JAVA collection Framework and filesystem object
ECOMP450.4	Design interface with Java Database Connectivity and create enterprise
	applications using components of J2EE

UNIT-1						
Introduction to JAVA: Java and Java applications; Java Development Kit (JDK)	10 Hrs.					
Byte Code, JVM; Object-oriented programming						
Simple Java programs: Data types and other tokens: Boolean variables, int, long,						
char, operators, arrays, white spaces, literals, assigning values; Creating and						
destroying objects; Access specifiers. Operators and Expressions: Arithmetic						
Operators, Bitwise operators, Relational operators, The Assignment Operator,						
Ternary Conditional Operator; Operator Precedence; Logical expression;						
Typecasting; Strings.						
Control Statements: Selection statements, iteration statements, Jump Statements.						
Classes, Inheritance, Exceptions: Classes: Classes in Java; Declaring a class;						
Class name; Super classes; Constructors; Creating instances of class; Inner classes.						
Inheritance: Simple, multiple, and multilevel inheritance; Overriding, overloading,						
Exception handling in Java.						
Java Packages: Creating a Package, The import Keyword, The Directory Structure						
of Packages, Set CLASSPATH System Variable.						
UNIT-2						
Multi-Threaded Programming: Multi-Threaded Programming: What are						
threads? How to make the classes threadable; Extending threads; Implementing						
runnable; Synchronization; Changing state of the thread; Bounded buffer problems,						
readwrite problem, producer-consumer problems.						

Event Handling: Two event handling mechanisms; The delegation event model;					
Event classes; Sources of events; Event listener interfaces; Using the delegation					
event model; Adapter classes; Inner classes.					
Swings: The origins of Swing; Two key Swing features; Components and					
Containers; The Swing Packages; A simple Swing Application; Create a Swing					
Applet; Jlabel and ImageIcon; JTextField;The Swing Buttons; JTabbedpane;					
JScrollPane; JList; JComboBox; JTable; Jframes					
UNIT-3					
Java Collection Framework: Interfaces (Set, List, Queue, Deque), ArrayList,	10 Hrs.				
Vector, LinkedList, PriorityQueue, HashSet, LinkedHashSet, TreeSet; Lambda					
Expressions Files and Streams: Stream, Standard Streams, Reading and Writing					
Files, ByteArrayInputStream, DataInputStream, FileOutputStream,					
ByteArrayOutputStream, DataOutputStream, Navigation and I/O, Working with					
File Object, File I/O Basics, Reading and Writing to Files, Buffer and Buffer					
Management, Read/Write Operations with File Channel, Serializing Objects					
UNIT-4					
JAVA 2 Enterprise Edition Overview, Database Access: Overview of J2EE and					
J2SE. The Concept of JDBC; JDBC Driver Types; JDBC Packages; A Brief					
Overview of the JDBC process; Database Connection; Associating the					
JDBC/ODBC Bridge with the Database; Statement Objects; ResultSet; Transaction					
Processing; Metadata, Data types; Exceptions. Servlets: Background; The Life					
Cycle of a Servlet; Using Tomcat for Servlet Development; A simple Servlet; The					
Servlet API; The Javax.servlet Package; Reading Servlet Parameter; The					
Javax.servlet.http package; Handling HTTP Requests and Responses; Using					
Cookies; Session Tracking. JSP: Java Server Pages (JSP): JSP, JSP Tags, Tomcat,					
Request String, User Sessions, Cookies, Session Objects					
Request Suring, User Sessions, Cookies, Session Objects					

TEXTBOOKS

"Java The Complete Reference", Herbert Schildt, McGraw Hill; Eleventh edition, 1 2020

Education, 6th

2 "Programming with Java", E. Balagurusami, McGraw-Hill; Sixth edition, 2019

RE	FERENCE BOOKS
1	"J2EE - The Complete Reference", Jim Keogh, Tata McGraw Hill.
2	"Core Java Volume 1: Fundamentals", Cay S. Horstmann, Oracle Press, 12th edition.
3	"Introduction to JAVA Programming", Y. Daniel Liang, Pearson Education, 6th
	Edition.

ECOMP 460 JAVA and DBMS Lab

Course		Scheme of Instruction			Theory Exam Duration	5						
Code	Name of the Course	Hrs. / week		Marks					Total	Credi		
		L	Т	Р		ТН	S	T W	Р	0	10181	ts
ECOMP 460	JAVA and DBMS Lab	_	_	2	-	-	-	_	25	_	25	1

Course Objective:

The course aims to provide the student with:

PART A:

- 1. To use an integrated development environment to write, compile, run, and test simple object-oriented Java programs.
- 2. To design and develop JAVA program to solve real life problems

PART B:

- 1. To introduce basic database concepts, applications, data models, schemas and instances
- 2. To train students in Database designing and implementation considering application requirement

Course Outcome:

Upon completion of the course, students will be able to

PART A:

ECOMP 460.1	Learn and implement basic JAVA programs adhering OOP concept
ECOMP 460.2	Apply concepts of Inheritance, exception handling, multithreading & event
	handling to solve real example
ECOMP 460.3	Utilization of JAVA collection Framework & files and streams using Java
ECOMP 460.4	Design interfaces using Swing Classes with Java Database Connectivity

PART B:

ECOMP 460.5	Apply the basic concepts of Database Systems and Applications
ECOMP 460.6	Use the basics of SQL and construct queries using SQL in database
	creation and interaction.
ECOMP 460.7	Design and implement backend storage for semi structured and
	unstructured data using MongoDB
ECOMP 460.8	Implement Aggregation, Indexing and querying techniques and to connect
	MongoDB given an application

List of Experiments:

Note: At least 10 experiments should be conducted from Part A and B. PART A: JAVA

1 Simple Programs in Java (2-3 programs)

- 2 Simulation of Constructors in Java
- 3 A program to demonstrate Inheritance in Java
- 4 A program to demonstrate Multithreaded Programming in Java
- 5 A program to demonstrate Exceptions and Event Handling in Java
- 6 A mini application using SWINGS in Java
- 7 A program with utilization of Java Collection Framework
- 8 A program to demonstrate importance of Files and Streams
- 9 A program to demonstrate JDBC/ODBC connectivity and its use
- 10 A program to demonstrate Servlets and JSP
- 11 Implementation of Java Web Based(Mini-Project)
- 12 A program to demonstrate connectivity and data movement using MongoDB

PART B: Database Management Systems

- 1 To study Data Definition language Statements and Data Manipulation Statements.
- 2 Study of SELECT command with different clauses
- 3 Study of GROUP functions (avg, count, max, min, Sum).
- 4 Study of various type of SET OPERATORS (Union, Intersect, Minus).
- 5 Study of Various type of JOINS
- 6 To study Views, Triggers and Procedures
- 7 Implement database with suitable example using MongoDB and implement all basic operations and administration commands using two tier architecture
- 8 Use MongoDB to process semi structured and unstructured data collections such as Rfid, images, blogs use Python/Java/Any suitable language MongoDB interface.
- 9 Aggregation and indexing with suitable example using MongoDB.
- 10 Indexing and querying with MongoDB using suitable example.
- 11 Connectivity with MongoDB using any Java application.

The total marks for the practical exam are 25. Following guidelines can be followed for conducting the practical examination to maintain the uniformity across the colleges under the GOA University.

- Question1 from PART A (10 Marks)
- Question2 from PART B (10 Marks)
- Viva (05 Marks)

Submission of practical file is mandatory

ECOMP 470 Analog Circuits Design Lab

Course		Scheme of Instruction Hrs. / week		Theory	Scheme of Examination							
Course Code	Name of the Course			Exam Duration	Marks				Total	Credi		
		L	Т	Р		ТН	S	T W	Р	0	Totai	ts
ECOMP 470	Analog Circuits Design Lab	_	_	2	-	-	-	_	25	_	25	1

Course Objective:

- 1. To apply operational amplifiers in linear and nonlinear applications.
- 2. To acquire the basic knowledge of special function ICs

Course Outcome:

Upon completion of the course, students will be able to

PART A:

ECOMP 470.1	Understand the working of op-amp and its applications
ECOMP 470.2	Design and analyze various linear and non-linear application circuits of op-
	amp
ECOMP 470.3	Construct and trouble shoot op amp circuits in the laboratory with proper use
	of test equipment.
ECOMP 470.4	Develop IC based project kits in above areas according to specifications

List of Experiments

Note: At least 10 experiments should be conducted from the following list of

experiments

- 1 Current mirror circuit
- 2 Op-amp open loop inverting and non-inverting circuit
- 3 Op-amp closed loop Inverting and Non-Inverting amplifier
- 4 Op-amp: Differentiator, Integrator
- 5 Op-amp: Summing, Scaling and Averaging amplifier
- 6 Op-amp: Instrumentation amplifier
- 7 Op-amp Schmitt Trigger and Monostable Multivibrator
- 8 Binary Weighted &R-2R Ladder type D- A Converter using op-amp.
- 9 Op-amp: Square wave generator, triangular wave generator
- 10 Active HP, LP and BP filter using op-amp
- 11 RC Phase Shift and Wein Bridge oscillator using op-amp
- 12 Astable and Monostable Multivibrator using IC 555
- 13 PLL Characteristics

The total marks for the practical exam are 25. Following guidelines can be followed for conducting the practical examination to maintain the uniformity across the colleges under the GOA University.

- Question1 can be easy (10 Marks)
- Question2 can be difficult (10 Marks)
- Viva (05 Marks)

Submission of practical file is mandatory

HM013 Business Economies and Management

Comm		Scheme of Instruction Hrs. / week		Theory	Scheme of Examination							
Cours Code				Exam Duration	Marks					Total	Credi	
		L	Т	Р		ТН	S	T W	Р	0	1 otai	ts
HM01	Business Economics and Management	3	_	_	3	100	25	_	_		125	3

Course Objectives:

- 1. To expose students to basic Economic concepts and inculcate an analytical approach to the subject matter
- 2. To apply economic reasoning to problems of business
- 3. To be able to recognize, formulate and analyze cash flow models in practical situations
- 4. To familiarize the students with the basic principles of management
- 5. To acquaint the students with standard concepts that they are likely to find useful in their profession when employed
- 6. To be able to understand the various concepts in Ethics

Course Outcome:

HM013.1	Understand and apply the basic principles of economics and national
	income terms
HM013.2	Apply the basic financial concepts and analyse different financial
	statements to make sound business decisions
HM013.3	Evaluate different management concepts
HM013.4	Apply managerial concepts to solve complex problems related to global
	issues

UNIT-1		
Introduction and General Concepts: Demand and Supply- Demand curve,	9 Hrs.	
Supply curve, Market Equilibrium		
Estimation/Forecasting of Demand: Meaning, importance, methods-		
trend, exponential smoothing, regression analysis		
National Income Terms: GDP, Real v/s Nominal GDP, Net Domestic Product,		
GNP, National Income, Per capita income, Disposable Income, Price Index,		
Inflation		
UNIT-2		
Preparation of Income statement, Balance sheet.	10 Hrs.	

Understanding and analyzing them using financial ratios – liquidity, leverage and	
profitability ratios.	
Capital Budgeting: Different Methods of Evaluation of Projects- Payback Period,	
Discounted Cash Flow methods- Net Present Value.	
Working Capital Management: Determinants of working capital, financing of	
working capital, dangers of excessive and shortage of working capital.	
Break even Analysis	
UNIT-3	
General Principles of Management: Introduction to Management, Functions of a	10 Hrs.
manager.	
Planning: Importance of planning, types of plans.	
Controlling: Basic control process, Critical control points and standards	
Human Resource Management and Selection, Definition of Staffing, Overview of	
the staffing function, Selection process.	
Appraising and Rewarding Performance: Money as a means of Rewarding	
Employees, performance appraisal, the Reward Pyramid MBO Process, How to set	
objectives, benefits and weaknesses, Span of management, Factors determining an	
effective span, Organization, Structure of organization, Formal and informal	
organization, Depart mentation, Matrix Organization, Strategic Business Unit	
Decentralization and Delegation.	
Leadership: Ingredients of leadership, Managerial grid.	
UNIT-4	
Communication: Nature and Importance of Communication, The Two-Way	10 Hrs.
Communication Process, Communication Barriers, Downward and Upward	
Communication/ Formal Informal Communication, Forms of communication.	
Motivation: Model of Motivation, Motivational Drives, Human Needs, Types of	
Needs, Maslow's Hierarchy of Needs, Hezberg's Two-Factor Theory.	
Managing Change: Nature of Work Change, three Stage in Change	
Engineering Ethics: Engineering Ethics, Self-interest, Customs and Religion.	
Interpersonal Behavior: Nature and Levels of Conflict, Sources of Conflict, Effects	
of Conflict, Model of Conflict: Participant Intentions, Resolution Strategies.	
Whistle – Blowing	
Safety Responsibility and Rights: Responsibility of Engineers, Risk-Benefit	
Analysis, Ethical issues in Cost-benefit Analysis, Ethics and Risk Management,	
Reducing Risk	
Reducing Rusk	1]

TEXTBOOKS

1	P.A. Samuelson & W.D. Nordhaus, Economics, 19th Edition McGraw Hill, New
	York, 1995
2	P. C. Tripathi, P. N. Reddy; Principles of Management; 2nd edition, Tata McGraw
	Hill; 1991.
3	R. L. Varshney, K L Maheswari; Managerial Economics; Nineteenth, Revised and
	Enlarged Edition; Sultan Chand and Sons Publications
4	Prasanna Chandra; Fundamentals of Financial Management; Third Edition, Tata
	McGraw-Hill, NewDelhi

REFERENCE BOOKS

 1
 John W. Newstrom, Keith Davis; Organizational Behavior (Human Behavior at Work); Tenth Edition, Tata McGraw Hill

2	A. Alavudeen, R. Kalil Rahman and M. Jayakumaran; Professional Ethics and Human
	Values; Laxmi Publications
3	Richard M. Lynch, Robert W. Williamson; Accounting for Management, Planning and
	Control; Third Edition, Tata McGraw-Hill, New Delhi
4	C. B Gupta; Management: Theory and Practice; Seventeenth Revised and Enlarged
	edition; Sultan Chand &Sons
5	H. Craig Petersen, W. Cris Lewis, Sudhir K. Jain; Managerial Economics; Prentice Hall
	India